ORIGINAL ARTICLE
 
KEYWORDS
ABSTRACT
Quercus ningangensis is an economically and ecologically important tree species belonging to the family Fagaceae. In this study, the complete chloroplast (cp) genome of Q. ningangensis was sequenced and assembled, and 18 published cp genomes of Quercus were retrieved for genomic analyses (including sequence divergence, repeat elements, and structure) and phylogenetic inference. With this study, we found that complete cp genomes in Quercus are conserved, and we discovered a codon composition bias, which may be related to genomic content and genetic characteristics. In addition, we detected considerable structural variations in the expansion and contraction of inverted repeat regions. Six regions with relatively high variable (matK-rps16, psbC, ycf3 intron, rbcL, petA-psbJ, and ycf1) were detected by conducting a sliding window analysis, which has a high potential for developing effective genetic markers. Phylogenetic analysis based on Bayesian inference and maximum likelihood methods resulted in a robust phylogenetic tree of Quercus with high resolution for nearly all identified nodes. The phylogenetic relationships showed that the phylogenetic position of Q. ningangensis was located between Q. sichourensis and Q. acuta. The results of this study contribute to future research into the phylogenetic evolution of Quercus section Cyclobalanopsis (Fagaceae).
 
REFERENCES (66)
1.
Alexander, L. W. & Woeste, K. E. 2014. Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management. Tree Genetics & Genomes 10: 803–812. https://doi.org/10.1007/s11295....
 
2.
Amiryousefi, A., Hyvönen, J. & Poczai, P. 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34: 3030–3031. https://doi.org/10.1093/bioinf....
 
3.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A. & Pevzner, P. A. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455–477. https://doi.org.fjny.80599.net....
 
4.
Bellgard, M., Schibeci, D., Trifonov, E. & Gojobori, T. 2001. Early detection of G + C differences in bacterial species inferred from the comparative analysis of the two completely sequenced Helicobacter pylori strains. Journal of Molecular Evolution 53: 465–468. https://doi.org/10.1007/s00239....
 
5.
Bi, G. Q., Mao, Y. X., Xing, Q. K. & Cao, M. 2018. HomBlocks: a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics 110: 18–22. https://doi.org/10.1016/j.ygen....
 
6.
Carbonell-Caballero, J., Alonso, R., Ibañez, V., Terol, J., Talon, M. & Dopazo, J. 2015. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Molecular Biology & Evolution 32: 2015–2035. https://doi.org/10.1093/molbev....
 
7.
Carrero, C., Jerome, D., Beckman, E., Byrne, A., Coombes, A. J., Deng, M., Rodriguez, A. G., Sam, H. V., Khoo, E., Nguyen, N., Robiansyah, I., Correa, H. R., Sang, J., Song, Y. G., Strijk, J., Sugau, J., Sun, W., Valencia-Avalos, S. & Westwood, M. 2020. The red list of oaks 2020. The Morton Arboretum: Lisle, IL.
 
8.
CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106: 12794–12797. https://doi.org/10.1073/pnas.0....
 
9.
Chen, Y. X., Chen, Y. S., Shi, C. M., Huang, Z. B., Zhang, Y., Li, S. K., Li, Y., Ye, J., Yu, C., Li, Z., Zhang, X. Q., Wang, J., Yang, H. M., Fang, L. & Chen, Q. 2018. SOAPnuke: A mapreduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7: 1–6. https://doi.org/10.1093/gigasc....
 
10.
Cosner, M. E., Raubeson, L. A. & Jansen, R. K. 2004. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evolutionary Biology 4: 27. https://doi.org/10.1186/1471-2....
 
11.
Curci, P. L., Paola, D. D., Danzi, D., Vendramin, G. G. & Sonnante, G. 2015. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS ONE 10: e0120589. https://doi.org/10.1371/journa....
 
12.
Dane, F., Wang, Z. & Goertzen, L. 2015. Analysis of the complete chloroplast genome of Castanea pumila var. pumila, the Allegheny chinkapin. Tree Genetics & Genomes 11: 14. https://doi.org/10.1007/s11295....
 
13.
Deng, M., Jiang, X. L., Hipp, A. L., Manos, P. S. & Hahn, M. 2018. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insight into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Molecular Phylogenetics & Evolution 119: 170–181. https://doi.org/10.1016/j.ympe....
 
14.
Deng, M., Hipp, A., Song, Y. G., Li, Q. S., Coombes, A. & Cotton, A. 2014. Leaf epidermal features of Quercus subgenus Cyclobalanopsis (Fagaceae) and their systematic significance. Botanical Journal of the Linnean Society 176: 224–259. https://doi.org/10.1111/boj.12....
 
15.
Denk, T., Grimm, G. W., Manos, P. S., Deng, M. & Hipp, A. L. 2017. An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In: Gil-Pelegrin E., Peguero-Pina J., Sancho-Knapik D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Tree Physiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-....
 
16.
Doyle, J. J. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
 
17.
Fazan, L., Song, Y. G. & Kozlowski, G. 2020. The woody planet: from past triumph to manmade decline. Plants 9: 1593. https://doi.org/10.3390/plants....
 
18.
Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Research 32: W273–W279. https://doi.org/10.1093/nar/gk....
 
19.
Guo, H. J., Liu, J. S., Luo, L., Wei, X. P., Zhang, J., Qi, Y. D., Zhang, B. G., Liu, H. T. & Xiao, P. G. 2017. Complete chloroplast genome sequences of Schisandra chinensis: Genome structure, comparative analysis, and phylogenetic relationship of basal angiosperms. Science China Life Science 60: 1286–1290. https://doi.org/10.1007/s11427....
 
20.
Häggström, M. 2019. Being in the forest – A matter of cultural connections with a natural environment. Plants People Planet 1: 221–232. https://doi.org/10.1002/ppp3.1....
 
21.
Han, Y. W., Duan, D., Ma, X. F., Jia, Y., Liu, Z. L., Zhao, G. F. & Li, Z. H. 2016. Efficient identification of the forest tree species in Aceraceae using DNA barcodes. Frontiers in Plant Science 7: 1707. https://doi.org/10.3389/fpls.2....
 
22.
He, L., Qian, J., Li, X. W., Sun, Z. Y., Xu, X. L. & Chen, S. L. 2017. Complete chloroplast genome of medicinal plant Lonicera japonica: Genome rearrangement, intron gain and loss, and implications for phylogenetic studies. Molecules 22: 249. https://doi.org/10.3390/molecu....
 
23.
Hipp, A. L., Manos, P. S., Hahn, M., Avishai, M., Bodénès, C., Cavender-Bares, J., Crowl, A. A., Deng, M., Denk, T., Fitz-Gibbon, S., Gailing, O., González-Elizondo, M. S., González-Rodríguez, A., Grimm, G. W., Jiang, X. L., Kremer, A., Lesur, I., McVay, J. D., Plomion, C., Rodríguez-Correa, H., Schulze, E. D., Simeone, M. C., Sork, V. L. & Valencia-Avalos, S. 2020. Genomic landscape of the global oak phylogeny. New Phytologist 226: 1198–1212. https://doi.org/10.1111/nph.16....
 
24.
Hollingsworth, P. M., Graham, S. W. & Little, D. P. 2011. Choosing and using a plant DNA barcode. PLoS ONE 6: e19254. https://doi.org/10.1371/journa....
 
25.
Huang, C. C., Chang, Y. T. & Bartholomew, B. 1999. Fagaceae. In: Flora of China, English version. Vol. 4, pp. 380–400. Science Press and Missouri Botanical Garden Press: Beijing, China and St. Louis, MO, USA.
 
26.
Huang, H., Shi, C., Liu, Y., Mao, S. Y. & Gao, L. Z. 2014. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evolutionary Biology 14: 151. https://doi.org/10.1186/1471-2....
 
27.
Jansen, R. K. & Ruhlman, T. A. 2012. Plastid genomes of seed plants. Springer Press, Berlin.
 
28.
Kim, K. J. & Lee, H. L. 2004. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Research 11: 247–261. https://doi.org/10.1093/dnares....
 
29.
Kremer, A. & Hipp, A. L. 2020. Oaks: an evolutionary success story. New Phytologist 226: 987–1011. https://doi.org/10.1111/nph.16....
 
30.
Li, X., Li, Y. F., Zang, M. Y., Li, M. Z. & Fang, Y. M. 2018. Complete chloroplast genome sequence and phylogenetic analysis of Quercus acutissima. International Journal of Molecular Sciences 19: 2443. https://doi.org/10.3390/ijms19....
 
31.
Li, Q. J., Su, N., Zhang, L., Tong, R. C., Zhang, X. H., Wang, J. R., Chang, Z. Y., Zhao, L. & Potter, D. 2020a. Chloroplast genomes elucidate diversity, phylogeny, and taxonomy of Pulsatilla (Ranunculaceae). Scientific Reports 10: 19781. https://doi.org/10.1038/s41598....
 
32.
Li, Y., Wang, L., Liu, Q. L. & Fang, Y. M. 2020b. The complete plastid genome sequence of Quercus ciliaris (Fagaceae). Mitochondrial DNA Part B 5: 1954–1955. https://doi.org/10.1080/238023....
 
33.
Librado, P. & Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. https://doi.org/10.1093/bioinf....
 
34.
Liu, C., Shi, L. C., Zhu, Y. J., Chen, H. M., Zhang, J. H., Lin, X. H. & Guan, X. J. 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13: 715. https://doi.org/10.1186/1471-2....
 
35.
Lohse, M., Drechsel, O., Kahlau, S. & Bock, R. 2013. OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research 41: W575–W581. https://doi.org/10.1093/nar/gk....
 
36.
Luo, R. B., Liu, B. H., Xie, Y. L., Li, Z. Y., Huang, W. H., Yuan, J. Y., He, G. Z., Chen, Y. X., Pan, Q., Liu, Y. J., Tang, J. B., Wu, G. X., Zhang, H., Shi, Y. J., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C. L., Cheung, D. W., Yiu, S. M., Peng, S. L., Zhu, X. Q., Liu, G. M., Liao, X. K., Li, Y. R., Yang, H. M., Wang, J., Lam, T. W. & Wang J. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1: 18. https://doi.org/10.1186/s13742....
 
37.
Ma, P. F., Zhang, Y. X., Zeng, C. X., Guo, Z. H. & Li, D. Z. 2014. Chloroplast phylogenomic analysis resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Systematic Biology 63: 933–950. https://doi.org/10.1093/sysbio....
 
38.
Manos, P. S. & Stanford, A. M. 2001. The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. International Journal of Plant Sciences 162: S77–S93. https://doi.org/10.1086/323280.
 
39.
Meng, Y., Wen, J., Nie, Z. L., Sun, H. & Yang, Y. P. 2008. Phylogeny and biogeographic diversification of Maianthemum (Ruscaceae: Polygonatae). Molecular Phylogenetics & Evolution 49: 424–434. https://doi.org/10.1016/j.ympe....
 
40.
Morton, B. R. 2003. The role of context-dependent mutations in generating compositional and codon usage bias in grass chloroplast DNA. Journal of Molecular Evolution 56: 616–629. https://doi.org/10.1007/s00239....
 
41.
Morton, B. R. & Clegg, M. T. 1995. Neighboring base composition is strongly correlated with base substitution bias in a region of the chloroplast genome. Journal of Molecular Evolution 41: 597–603. https://doi.org/10.1007/bf0017....
 
42.
Morton, B. R., Oberholzer, V. M. & Clegg, M. T. 1997. The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome. Journal of Molecular Evolution 45: 227–231. https://doi.org/10.1007/pl0000....
 
43.
Mu, X. Y., Tong, L., Sun, M., Zhu, Y. X., Wen, J., Lin, Q. W. & Liu, B. 2020. Phylogeny and divergence time estimation of the walnut family (Juglandaceae) based on nuclear RAD-Seq and chloroplast genome data. Molecular Phylogenetics & Evolution 147: 106802. https://doi.org/10.1016/j.ympe....
 
44.
Muse, S. V. & Gaut, B. S. 1994. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Molecular Biology & Evolution 11: 715–724. https://doi.org/10.1093/oxford....
 
45.
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. 2014. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Molecular Biology & Evolution 32: 268–274. https://doi.org/10.1093/molbev....
 
46.
Nixon, K. C. 1997. Quercus. In: Editorial Committee ed. Flora of North America North of Mexico. pp. 445–447. New York, NY, USA: Oxford University Press.
 
47.
Patel, R. K. & Jain, M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7: e30619. https://doi.org/10.1371/journa....
 
48.
Perry, A. S. & Wolfe, K. H. 2002. Nucleotide substitution rates in Legume chloroplast DNA depend on the presence of the inverted repeat. Journal of Molecular Evolution 55: 501–508. https://doi.org/10.1007/PL0002....
 
49.
Posada, D. & Crandall, K. A. 1998. Modeltest: testing the model DNA substitution. Bioinformatics 14: 817–818. https://doi.org/10.1093/bioinf....
 
50.
Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinf....
 
51.
Song, Y. G., Petitpierre, B., Deng, M., Wu, J. P. & Kozlowski, G. 2019. Predicting climate change impacts on the threatened Quercus arbutifolia in montane cloud forests in southern China and Vietnam: Conservation implications. Forest Ecology and Management 444: 269–279. https://doi.org/10.1016/j.fore....
 
52.
Sueoka, N. & Kawanishi, Y. 2000. DNA G+C content of the third codon position and codon usage biases of human genes. Gene 261: 53–62. https://doi.org/10.1016/S0378-....
 
53.
Terakami, S., Matsumura, Y., Kurita, K., Kanamori, H., Katayose, Y., Yamamoto, T. & Katayama, H. 2012. Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis. Tree Genetics & Genomes 8: 841–854. https://doi.org/10.1007/s11295....
 
54.
Thiel, T., Michalek, W., Varshney, R. K. & Graner, A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical & Applied Genetics 106: 411–422. https://doi.org/10.1007/s00122....
 
55.
Timme, R. E., Kuehl, J. V., Boore, J. L. & Jansen, R. K. 2007. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. American Journal of Botany 94: 302–312. https://doi.org/10.3732/ajb.94....
 
56.
Uckele, K. A., Adams, R. P., Schwarzbach, A. E. & Parchman, T. L. 2021. Genome-wide RAD sequencing resolves the evolutionary history of serrate leaf Juniperus and reveals discordance with chloroplast phylogeny. Molecular Phylogenetics & Evolution 156: 107022. https://doi.org/10.1016/j.ympe....
 
57.
Wang, Y. H., Wicke, S., Wang, H., Jin, J. J., Chen, S. Y., Zhang, S. D., Li, D. Z. & Yi, T. S. 2018. Plastid genome evolution in the early-diverging legume subfamily Cercidoideae (Fabaceae). Frontiers in Plant Science 9: 138. https://doi.org/10.3389/fpls.2....
 
58.
Weng, M. L., Blazier, J. C., Govindu, M. & Jansen, R. K. 2013. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats and nucleotide substitution rates. Molecular Biology & Evolution 31: 645–659. https://doi.org/10.1093/molbev....
 
59.
Wicke, S., Schneeweiss, G. M., dePamphilis, C. W., Müller, K. F. & Quandt, D. 2011. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Molecular Biology 76: 273–297. https://doi.org/10.1007/s11103....
 
60.
Yang, J., Guo, Y. F., Chen, X. D., Zhang, X., Ju, M. M., Bai, G. Q., Liu, Z. L. & Zhao, G. F. 2020. Framework phylogeny, evolution and complex diversification of Chinese oaks. Plants 9: 1024. https://doi.org/10.3390/plants....
 
61.
Yang, Y. C., Zhu, J., Feng, L., Zhou, T., Bai, G. Q., Yang, J. & Zhao, G. F. 2018. Plastid genome comparative and phylogenetic analyses of the key genera in Fagaceae: highlighting the effect of codon composition bias in phylogenetic inference. Frontiers in Plant Science 9: 82. https://doi.org/10.3389/fpls.2....
 
62.
Yang, Z. H. & Yoder, A. D. 1999. Estimation of the transition/transversion rate bias and species sampling. Journal of Molecular Evolution 48: 274–283. https://doi.org/10.1007/pl0000....
 
63.
Yu, T., Gao, J., Huang, B. H., Dayananda, B., Zhang, Y. Y., Liao, P. C. & Li, J. Q. 2020. Comparative plastome analyses and phylogenetic applications of the Acer section Platanoidea. Forests 11: 462. https://doi.org/10.3390/f11040....
 
64.
Zhang, R. S., Yang, J., Hu, H. L., Xia, R. X., Li, Y. P., Su, J. F., Li, Q., Liu, Y. Q. & Qin, L. 2020. A high level of chloroplast genome sequence variability in the Sawtooth oak Quercus acutissima. International Journal of Biological Macromolecules 152: 340–348. https://doi.org/10.1016/j.ijbi....
 
65.
Zhao, F., Chen, Y. P., Salmaki, Y., Drew, B. T., Wilson, T. C., Scheen, A. C., Celep, F., Brauchler, C., Bendiksby, M., Wang, Q., Min, D. Z., Peng, H., Olmstead, R. G., Li, B. & Xiang, C. L. 2020. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biology 19: 2. https://doi.org/10.1186/s12915....
 
66.
Zhu, A. D., Guo, W. H., Gupta, S., Fan, W. S. & Mower, J. P. 2015. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytologist 209: 1747–1756. https://doi.org/10.1111/nph.13....
 
 
CITATIONS (6):
1.
Complete Chloroplast Genome of an Endangered Species Quercus litseoides, and Its Comparative, Evolutionary, and Phylogenetic Study with Other Quercus Section Cyclobalanopsis Species
Yu Li, Tian-Rui Wang, Gregor Kozlowski, Mei-Hua Liu, Li-Ta Yi, Yi-Gang Song
Genes
 
2.
Importance, Tools, and Challenges of Protecting Trees
Gregor Kozlowski, Yi-Gang Song
Sustainability
 
3.
Comparison of Chloroplast Genomes and Phylogenetic Analysis of Four Species in Quercus section Cyclobalanopsis
Xiaoli Chen, Xuemei Zhang
 
4.
A first draft genome of holm oak (Quercus ilex subsp. ballota), the most representative species of the Mediterranean forest and the Spanish agrosylvopastoral ecosystem “dehesa”
María-Dolores Rey, Mónica Labella-Ortega, Víctor Guerrero-Sánchez, Rômulo Carleial, María Castillejo, Valentino Ruggieri, Jesús Jorrín-Novo
Frontiers in Molecular Biosciences
 
5.
Comparison of chloroplast genomes and phylogenetic analysis of four species in Quercus section Cyclobalanopsis
Xiaoli Chen, Buyu Li, Xuemei Zhang
Scientific Reports
 
6.
Structural conservation and functional genetic adaptive evolution of chloroplast genomes in Cycle-cup Oaks
Yu Li, Si-Si Zheng, Tian-Rui Wang, Mei-Hua Liu, Gregor Kozlowski, Li-Ta Yi, Yi-Gang Song
 
eISSN:2657-5000
ISSN:2544-7459
Journals System - logo
Scroll to top