ORIGINAL ARTICLE
 
KEYWORDS
ABSTRACT
The Biatora vernalis- and meiocarpa-groups comprise species with pale beige to reddish brown apothecia and 0-, rarely also 1(–3)-septate ascospores. A DNA barcoding approach based on ITS sequences shows that these two groups comprise more species and phylogenetic diversity than previously known. Specimens identified as B. vernalis, the type species of the genus, appear to be paraphyletic with regard to B. chrysantha. In addition, there is a morphologically similar species belonging to the B. meiocarpa-group and tentatively named “B. orientalis” in previous publications. Biatora subduplex has for some time been known to comprise specimens from the B. vernalis-, as well as the B. meiocarpa-group. Similar to the situation in B. vernalis, samples from the meiocarpa-clade form several subclades close to B. meiocarpa. Anatomical studies reveal subtle, but recognizable morphological differences between B. subduplex s.str. and the species in the meiocarpa-clade, but not between the subclades. Here, we describe Biatora orientalis as new to science, raise B. meiocarpa var. tacomensis to species rank and provide revised identification keys for the B. vernalis- and B. meiocarpa-groups.
FUNDING
CP gratefully acknowledges financial support for field trips by the Research Council of Norway, the Grolle Olsens Fund and the German Science Foundation. LW, AK and LMs work was supported by the Finnish Ministry of the Environment PUTTE program 2021–2022. The OLICH sequences (OR775002-79) were generated by the Canadian Centre for DNA Barcoding, partly funded by the Norwegian Barcode of Life and the Norwegian Biodiversity Information Centre.
 
REFERENCES (39)
1.
Altermann, S., Leavitt, S. D., Goward, T., Nelsen, M. P. & Lumbsch, H. T. 2014. How do you solve a problem like Letharia? A new look at cryptic species in lichen-forming fungi using Bayesian clustering and SNPs from multilocus sequence data. PLoS One 9: e97556. https://doi.org/10.1371/journa....
 
2.
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K. K. & Das, I. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22: 148–155. https://doi.org/10.1016/j.tree....
 
3.
Coca, L. F., Lücking, R. & Moncada, B. 2018. Two new, sympatric and semi-cryptic species of Sulzbacheromyces (Lichenized Basidiomycota, Lepidostromatales) from the Chocó Biogeographic Region in Colombia. The Bryologist 121: 297–305. https://doi.org/10.1639/0007-2....
 
4.
Culberson, C. F. 1972. Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113–125. https://doi.org/10.1016/0021-9....
 
5.
Culberson, C. F. & Amman, K. 1979. Standardmethode zur Dünnschichtchromatographie von Flechtensubstanzen. Herzogia 5: 1–24. https://doi.org/10.1127/herzog....
 
6.
Culberson, C. F. & Kristinsson, H. 1970. A standardized method for the identification of lichen products. Journal of Chromatography 46: 85–93. https://doi.org/10.1016/S0021-....
 
7.
Divakar, P. K., Leavitt, S. D., Molina, M. C., Del-Prado, R., Lumbsch, H. T. & Crespo, A. 2016. A DNA barcoding approach for identification of hidden diversity in Parmeliaceae (Ascomycota): Parmelia sensu stricto as a case study. Botanical Journal of the Linnean Society 180: 21–29. https://doi.org/10.1111/boj.12....
 
8.
Frolov, I., Vondrák, J., Fernández-Mendoza, F., Wilk, K., Khodosovtsev, A. & Halıcı, M. G. 2016. Three new, seemingly-cryptic species in the lichen genus Caloplaca (Teloschistaceae) distinguished in two-phase phenotype evaluation. Annales Botanici Fennici 53: 243–262. https://doi.org/10.5735/085.05....
 
9.
Hafellner, J. 1984. Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Beihefte zur Nova Hedwigia 79: 241–371.
 
10.
Hebert, P. D., Cywinska, A., Ball, S. L. & DeWaard, J. R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 313–321. https://doi.org/10.1098/rspb.2....
 
11.
Hodkinson, B. P. & Lendemer, J. C. 2011. Molecular analyses reveal semi-cryptic species in Xanthoparmelia tasmanica. Bibliotheca Lichenologica 106: 108–119.
 
12.
Johnson, M., Zaretskaya, I., Raytselis, R., Merezhuk, Y., McGinnis, S. & Madden, T. L. 2008. NCBI BLAST: a better web interface. Nucleic Acids Research 36 (suppl. 2): W5–W9. https://doi.org/10.1093/nar/gk....
 
13.
Katoh, K., Rozewicki, J. & Yamada, K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bb....
 
14.
Kistenich, S., Timdal, E., Bendiksby, M. & Ekman, S. 2018. Molecular systematics and character evolution in the lichen family Ramalinaceae (Ascomycota: Lecanorales). Taxon 67: 871–904. https://doi.org/10.12705/675.1.
 
15.
Lagostina, E., Dal Grande, F., Andreev, M. & Printzen, C. 2018. The use of microsatellite markers for species delimitation in Antarctic Usnea subgenus Neuropogon. Mycologia, 110: 1047–1057. https://doi.org/10.1080/002755....
 
16.
Landan, G. & Graur, D. 2008. Local reliability measures from sets of co-optimal multiple sequence alignments. Pacific Symposium on Biocomputing 13: 15–24. https://doi.org/10.1142/978981....
 
17.
Leavitt, S. D., Fankhauser, J. D., Leavitt, D. H., Porter, L. D., Johnson, L. A. & Clair, L. L. S. 2011. Complex patterns of speciation in cosmopolitan “rock posy” lichens – Discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Molecular Phylogenetics and Evolution 59: 587–602. https://doi.org/10.1016/j.ympe....
 
18.
Leavitt, S. D., Esslinger, T. L., Divakar, P. K., Crespo, A. & Lumbsch, H. T. 2016. Hidden diversity before our eyes: delimiting and describing cryptic lichen-forming fungal species in camouflage lichens (Parmeliaceae, Ascomycota). Fungal Biology 120: 1374–1391. https://doi.org/10.1016/j.funb....
 
19.
Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., Cardinali, G., Crous, P. W., Druzhinina, I. S., Geiser, D. M., Hawksworth, D. L., Hyde, K. D., Irinyi, L., Jeewon, R., Johnston, P. R., Kirk, P. M., Malosso, E., May, T. W., Meyer, W., Öpik, M., Robert, V., Stadler, M., Thines, M., Vu, D., Yurkov, A. M., Zhang, N. & Schoch, C. L. 2020. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 11: 1–32. https://doi.org/10.1186/s43008....
 
20.
Lutsak, T., Fernández-Mendoza, F., Kirika, P., Wondafrash, M. & Printzen, C. 2020. Coalescence-based species delimitation using genome-wide data reveals hidden diversity in a cosmopolitan group of lichens. Organisms Diversity & Evolution 20: 189–218. https://doi.org/10.1007/s13127....
 
21.
Marthinsen, G., Rui, S. & Timdal, E. 2019. OLICH: A reference library of DNA barcodes for Nordic lichens. Biodiversity Data Journal 7: e36252. https://doi.org/10.3897/BDJ.7.....
 
22.
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev....
 
23.
Ossowska, E., Guzow-Krzemińska, B., Dudek, M., Oset, M. & Kukwa, M. 2018. Evaluation of diagnostic chemical and morphological characters in five Parmelia species (Parmeliaceae, lichenized Ascomycota) with special emphasis on the thallus pruinosity. Phytotaxa 383: 165–180. https://doi.org/10.11646/phyto....
 
24.
Palice, Z., Malíček, J., Vondrák, J. & Printzen, C. 2023. A distinctive new species of Biatora (Ramalinaceae, Lecanorales) described from native European forests. The Lichenologist 55: 325–334. https://doi.org/10.1017/S00242....
 
25.
Printzen, C. 1995. Die Flechtengattung Biatora in Europa. Bibliotheca Lichenologica 60: 1–275.
 
26.
Printzen, C. 2014. A molecular phylogeny of the lichen genus Biatora including some morphologically similar species. The Lichenologist 46: 441–453. https://doi.org/10.1017/S00242....
 
27.
Printzen, C. & Tønsberg, T. 1999. The lichen genus Biatora in northwestern North America. The Bryologist 102: 692–713. https://doi.org/10.2307/324425....
 
28.
Printzen, C. & Tønsberg, T. 2003. Four new species and three new apothecial pigments from the lichen genus Biatora. Bibliotheca Lichenologica 86: 133–145.
 
29.
Printzen, C. & Tønsberg, T. 2004. New and interesting Biatora-species, mainly from North America. Symbolae Botanicae Upsalienses 34(1): 343–357.
 
30.
Printzen, C., Halda, J. P., McCarthy, J. W., Palice, Z., Rodriguez-Flakus, P., Thor, G., Tønsberg, T. & Vondrák, J. 2016. Five new species of Biatora from four continents. Herzogia 29: 566–585. https://doi.org/10.13158/heia.....
 
31.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio....
 
32.
Rodriguez-Flakus, P. & Printzen, C. 2014. Molecular evidence for the occurrence of the lichen genus Biatora (Lecanorales, Ascomycota) in the Southern Hemisphere. Phytotaxa 172: 271–279. https://doi.org/10.11646/phyto....
 
33.
Schneider, K., Resl, P. & Spribille, T. 2016. Escape from the cryptic species trap: lichen evolution on both sides of a cyanobacterial acquisition event. Molecular Ecology 25: 3453–3468. https://doi.org/10.1111/mec.13....
 
34.
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., Crous, P. & Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the USA 109: 6241–6246. https://doi.org/10.1073/pnas.1....
 
35.
Sela, I., Ashkenazy, H., Katoh, K. & Pupko, T. 2015. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research 43 (Web Server issue): W7–W14. https://doi.org/10.1093/nar/gk....
 
36.
Tønsberg, T. 2002. Additions to the lichen flora of North America XI. The Bryologist 105: 122–125. https://doi.org/10.1639/0007-2....
 
37.
Tønsberg, T. & Printzen, C. 2018. Biatora troendelagica new to North America from Alaska, USA. Graphis Scripta 30: 161–165.
 
38.
Zakeri, Z., Otte, V., Sipman, H., Malíček, J., Cubas, P., Rico, V. J., Lenzová, V., Svoboda, D. & Divakar, P. K. 2019. Discovering cryptic species in the Aspiciliella intermutans complex (Megasporaceae, Ascomycota) – First results using gene concatenation and coalescent-based species tree approaches. PLoS One 14: e0216675. https://doi.org/10.1371/journa....
 
39.
Zhao, X., Fernández-Brime, S., Wedin, M., Locke, M., Leavitt, S. D. & Lumbsch, H. T. 2017. Using multi-locus sequence data for addressing species boundaries in commonly accepted lichen-forming fungal species. Organisms Diversity & Evolution 17: 351–363. http://dx.doi.org/10.1007/s131....
 
 
CITATIONS (1):
1.
Gyrophoric Acid, a Secondary Metabolite of Lichens, Exhibits Antidepressant and Anxiolytic Activity In Vivo in Wistar Rats
Nicol Urbanska, Martina Karasova, Zuzana Jendzelovska, Martin Majerník, Mariana Kolesarova, Dajana Kecsey, Rastislav Jendzelovsky, Peter Bohus, Terezia Kiskova
International Journal of Molecular Sciences
 
eISSN:2657-5000
ISSN:2544-7459
Journals System - logo
Scroll to top