ORIGINAL ARTICLE
Ascospore size declines with elevation in two tropical parmelioid lichens
 
More details
Hide details
1
386 rue des Flamboyants, F-40600 Biscarrosse, France
2
Evolution and Conservation Biology, InBios Research Center, Institut de Botanique B22, Université de Liège, Chemin de la vallée 4, 4000 Liège, Belgium
Publication date: 2020-06-02
 
Plant and Fungal Systematics 2020; 65(1): 227–237
 
KEYWORDS
ABSTRACT
Spore size and shape are biometric parameters frequently used in lichen taxonomy, especially in species characterization. However, the influence of environmental factors on the intraspecific variability of these characters remains very little investigated in lichenology. The elevational variation in spore length, width, volume and shape (length/ width ratio) of two species of the genus Hypotrachyna (H. aff. damaziana et H. altorum) occurring on Réunion Island (Indian Ocean) were studied. Spore length, width and volume significantly decrease with elevation in H. aff. damaziana, and spore width and volume also significantly decrease with elevation in H. altorum. There is no relation between spore shape and elevation in either of the two species. A significant correlation was further observed between the intra-individual variability in spore size of H. aff. damaziana and elevation. For this species, inter-individual variability in spore volume is also correlated with mean annual temperature and mean annual precipitation of the sampling locations, and spore width and length are correlated with mean annual temperature.
 
REFERENCES (55)
1.
Argüello, A., Del Prado, R., Cubas, P. & Crespo, A. 2007. Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society 91: 455–467.
 
2.
Benedict, J. B. 1990. Experiments on lichen growth. I. Seasonal patterns and environmental controls. Arctic and Alpine Research 22: 244–254.
 
3.
Clémençon, H. 1979. Biometrische Untersuchungen zur Variabilität der Basidiosporen. Beihefte zur Sydowia 8: 110–138.
 
4.
Clerc, P. 1984. Contribution à la révision systématique des Usnées (Ascomycotina, Usnea) d’Europe I. Usnea florida (L.) Wigg. emend. Clerc. Cryptogamie, Bryologie et Lichénologie 5: 333–360.
 
5.
Cubas, P., Lumbsch, H. T., Del Prado, R., Ferencova, Z., Hladun, N. L., Rico, V. J. & Divakar, P. K. 2018. Historical biogeography of the lichenized fungal genus Hypotrachyna (Parmeliaceae, Ascomycota): insights into the evolutionary history of a pantropical clade. The Lichenologist 50: 283–298.
 
6.
Dingley, J. M. 1962. Pithomyces chartarum, its occurrence, morphology, and taxonomy. New Zealand Journal of agricultural Research 5: 49–61.
 
7.
Divakar, P. K., Crespo, A, Núñez-Zapata, J., Flakus, A., Sipman, H. J. M., Elix, J. A. & Lumbsch, H. T. 2013. A molecular perspective on generic concepts in the Hypotrachyna clade (Parmeliaceae, Ascomycota). Phytotaxa 132: 21–38.
 
8.
Doré, C. J., Cole, M. S. & Hawksworth, D. L. 2006. Preliminary statistical studies of the infraspecific variation in the ascospores of Nesolechia oxyspora growing on different genera of parmelioid lichens. The Lichenologist 38: 425–434.
 
9.
Eliasaro, S. & Adler, M. T. 2000. The species of Canomaculina, Myelochroa, Parmelinella, and Parmelinopsis (Parmeliaceae, lichenized Ascomycotina) from the ‘Segundo Planalto’ in the state of Paraná, Brazil. Acta Botanica Brasilica 14: 141–149.
 
10.
Flakus, A., Etayo, J., Schiefelbein, U. L. F., Ahti, T., Jablónska, A., Oset, M., Bach, K., Flakus, P. R. & Kukwa, M. 2012. Contribution to the knowledge of the lichen biota of Bolivia. 4. Polish Botanical Journal 57: 427–461.
 
11.
Fox, J., Weisberg, S., Adler, D., Bates, D. et al. 2012. Package ‘car’. Vienna: R Foundation for Statistical Computing.
 
12.
Gauslaa, Y. 2014. Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. The Lichenologist 46: 1–16.
 
13.
Halbwachs, H. & Bässler, C. 2015. Gone with the wind – a review on basidiospores of lamellate agarics. Mycosphere 6: 78–112.
 
14.
Haldane, J. B. S. 1955. The measurement of variation. Evolution 9: 484.
 
15.
Hale, M. E. 1976. A monograph of the lichen genus Parmelina Hale (Parmeliaceae). Smithsonian Contributions to Botany 33: 1–60.
 
16.
Hanna, W. F. 1926. The inheritance of spore size in Coprinus sterquilinus. Transactions of the British Mycological Society 11: 219–238.
 
17.
Hawksworth, D. L. 1973. Ecological factors and species delimitation in the lichens. In: Heywood, V. H. (ed.), Taxonomy and Ecology, pp. 31–69. Academic Press, London.
 
18.
Hawksworth, D. L. 1974. Mycologist’s Handbook. An introduction to the principles of taxonomy and nomenclature in the fungi and lichens. Commonwealth Mycological Institute, Kew.
 
19.
Henriksson, E. 1964. Studies in the physiology of the lichen Collema. V. Effect of medium, temperature, and pH on growth of the mycobiont. Svensk Botanisk Tidskrift 58: 361–370.
 
20.
Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70.
 
21.
Jumaux, G., Quetelard, H. & Roy, D. 2011. Atlas climatique de La Réunion. Météo-France.
 
22.
Jungbluth, P. 2006. A família Parmeliaceae (fungos liquenizados) em cerrados do Estado de São Paulo, Brasil. Dissertação (mestrado), Instituto de Botânica da Secretaria de Estado do Meio Ambiente, São Paulo.
 
23.
Kassambara, A. 2017. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.1.6.
 
24.
Kershaw, K. A. 1985. Physiological ecology of lichens. Cambridge University Press, Cambridge.
 
25.
Kirika, P. M., Divakar, P. K., Crespo, A. & Lumbsch, H. T. 2019. Molecular and phenotypical studies on species diversity of Hypotrachyna (Parmeliaceae, Ascomycota) in Kenya, East Africa. The Bryologist 122: 140–150.
 
26.
Körner, C. 2007. The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution 22: 569–574.
 
27.
Krog, H. & Swinscow, T. D. V. 1979. Parmelia subgenus Hypotrachyna in East Africa. Norwegian Journal of Botany 26: 11–43.
 
28.
Lange, O. L., Büdel, B., Meyer, A., Zellner, H. & Zotz, G. 2004. Lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rainforest in Panama. The Lichenologist 36: 329–342.
 
29.
Le Roux, J. J., Strasberg, D., Rouget, M., Morden, C. W., Koordom, M. & Richardson, D. M. 2014. Relatedness defies biogeography: the tale of two island endemics (Acacia heterophylla and A. koa). New Phytologist 204: 230–242.
 
30.
Löfgren, O. & Tibell, L. 1979. Sphinctrina in Europe. The Lichenologist 11: 109–137.
 
31.
Martínez, I. & Burgaz, A. R. 1998. Revision of the genus Solorina (Lichenes) in Europe based on spore size variation. Annales Botanici Fennici 35: 137–142.
 
32.
Masson, D. 2012. Hypotrachyna altorum sp. nov., a new lichen from the cloud forests of Réunion Island, Indian Ocean. Cryptogamie, Mycologie 33: 203–212.
 
33.
Nash III, T. H., Pérez-Pérez, R. E. & Elix, J. A. 2016. Hypotrachyna in Mexico. Bibliotheca Lichenologica 110: 155–256.
 
34.
Norros, V., Rannik, U., Hussein, T., Petäjä, T., Vesala, T. & Ovaskainen, O. 2014. Do small spores disperse further than large spores? Ecology 95: 1612–1621.
 
35.
Núñez-Zapata, J., Divakar, P. K., Del-Prado, R., Cubas, P., Hawksworth, D. L. & Crespo, A. 2011. Conundrums in species concepts: the discovery of a new cryptic species segregated from Parmelina tiliacea (Ascomycota: Parmeliaceae). The Lichenologist 43: 603–616.
 
36.
Palmqvist, K., Dahlman, L., Jonsson, A. & Nash III, T. H. 2008. The carbon economy of lichens. In: Nash III, T. H. (ed.), Lichen Biology. Ed. 2, pp. 182–215. Cambridge University Press, New York.
 
37.
Parmasto, E. & Parmasto, I. 1987. Variation of basidiospores in the Hymenomycetes and its significance to their taxonomy. Bibliotheca Mycologica 115: 1–168.
 
38.
Pena, E. A. & Slate, E. H. 2012. gvlma: Global validation of linear models assumptions. R package version 1.0. 0.1.
 
39.
Pentecost, A. 1981. Some observations on the size and shape of lichen ascospores in relation to ecology and taxonomy. New Phytologist 89: 667–678.
 
40.
Petrie, G. A. 1994. Effects of temperature and moisture on the number, size and septation of ascospores produced by Leptosphaeria maculans (blackleg) on rapeseed stubble. Canadian Plant Disease Survey 74: 141–151.
 
41.
Poelt, J. 1973. Systematic evaluation of morphological characters. In: Ahmadjian, V. & Hale, M. E. (ed.), The lichens, pp. 91–115. Academic Press, New York and London.
 
42.
R Core Team 2018. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna.
 
43.
Raitviir, A. 1972. Statistical methods and species delimitation in the genus Otidea. Persoonia 6: 415–423.
 
44.
Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.
 
45.
Strasberg, D., Rouget, M., Richardson, D. M., Baret, S., Dupont, J. & Cowling, R. M. 2005. An assessment of habitat diversity and transformation on La Réunion Island (Mascarene Islands, Indian Ocean) as a basis for identifying broad-scale conservation priorities. Biodiversity and Conservation 14: 3015–3032.
 
46.
Thomas, E. A. 1939. Über die Biologie von Flechtenbildnern. Beiträge zur Kryptogamenflora der Schweiz 9: 1–205.
 
47.
Truong, C., Naciri, Y. & Clerc, P. 2009. Multivariate analysis of anatomical characters confirms the differentiation of two morphologically close species, Melanohalea olivacea (L.) O. Blanco et al. and M. septentrionalis (Lynge) O. Blanco et al. The Lichenologist 41: 649–661.
 
48.
Van den Boom, P. P. G., Brand, M., Ertz, D., Kalb, K., Magain, N., Masson, D., Schiefelbein, U., Sipman, H. J. M. & Sérusiaux, E. 2011. Discovering the lichen diversity of a remote island: working list of species collected on Reunion (Mascarene archipelago, Indian Ocean). Herzogia 24: 325–349.
 
49.
Van Herk, C. M., Aptroot, A. & van Dobben, H. F. 2002. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. The Lichenologist 34: 141–154.
 
50.
Weber, W. A. 1977. Environmental modification and lichen taxonomy. In: Seaward, M. R. D. (ed.), Lichen Ecology, pp. 9–29. Academic Press, London.
 
51.
Wickham, H. 2012. reshape2: Flexibly reshape data: a reboot of the reshape package. R package version 1.2.
 
52.
Wickham, H., François, R., Henry, L. & Müller, K. 2016. dplyr: A grammar of data manipulation. R package version 0.5.
 
53.
Williams, C. N. 1959. Spore size in relation to culture conditions. Transactions of the British Mycological Society 42: 213–222.
 
54.
Zotz, G., Büdel, B., Meyer, A., Zellner, H. & Lange, O. L. 1998. In situ studies of water relations and CO2 exchange of the tropical macrolichen, Sticta tomentosa. New Phytologist 139: 525–535.
 
55.
Zotz, G., Schultz, S. & Rottenberger, S. 2003. Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora 198: 71–77.
 
eISSN:2657-5000
ISSN:2544-7459