ORIGINAL ARTICLE
 
KEYWORDS
ABSTRACT
The Eocene-Oligocene Transition is one of the major stages of the Cenozoic reshaping of the world oceans with associated changes in climate, of ocean coastlines and circulation patterns. This altogether created challenging environments for fossilization and preservation of native biota. Consequently, well preserved Oligocene fossils are infrequent worldwide and just as rare in the Central Paratethys. The well-preserved Rupelian (Early Oligocene) diatomites from the Skole Nappe, the external unit of the Outer Carpathians in southeastern Poland were deposited in the Central Paratethys. In some samples, in addition to diatoms, sediments also contain a great diversity of other silicified micro- and nannofossils. Here we report our findings of silicoflagellates (fifteen taxa from five genera), two rotosphaeridians, and several morphotypes of fossil scales, some of uncertain taxonomic affinity. Among silicoflagellates, the most common are species from genera Corbisema (C. triacantha, C. hastata, and C. apiculata) and Dictyocha (D. clinata and D. fibula). We also recovered scales of rotosphaeridians (Pinaciophora and possibly Rabdiophrys) and remains of organisms of uncertain affinity (Clathropyxidella and Macrora) often reported together with silicoflagellates. All of these taxa are the first reports for the Central Paratethys. Silicoflagellate species composition is consistent with the datums derived from other fossils. Silicoflagellates, marine diatoms and archaeomonads suggest a neritic depositional environment.
FUNDING
Funding for field work, sample processing and early analyses in the mid- to late 1970s was provided by the AGH and PAS in Kraków and the Polish Geological Institute in Warsaw. Funding for electron microscopy of siliceous microfossils was provided by an NSERC Discovery Grant and the Mount Allison University Marjorie Bell Faculty Fund (Sabbatical) awarded to IK.
REFERENCES (89)
1.
Abe, K., McCartney, K., Fukunaga, Y., Narita, H. & Jordan, R. W. 2015. Silicoflagellates and ebridians from the Seto Inland Sea and Kuroshio, including the description of Octactis pulchra var. takahashii var. nov. Journal of Nannoplankton Research 35: 111–128. https://doi.org/10.58998/jnr20....
 
2.
Abe, K., Tsutsui, H. & Jordan, R. W. 2016. Hyalolithus tumescens sp. nov., a siliceous scale-bearing haptophyte from the middle Eocene. Journal of Micropalaeontology 35: 143–149.
 
3.
Abe, K., Pellegrino, L., Lozar, F., Tsutsui, H. & Jordan, R. W. 2022. Hyalo­lithus didymus sp. nov. (Haptophyta): a late Miocene siliceous microfossil from Sicily, Italy. Phycologia 61: 504–513. https://doi.org/10.1080/003188....
 
4.
Allison, C. W. & Hilgert, J. W. 1986. Scale microfossils from the Early Cambrian of Northwest Canada. Journal of Paleontology 60: 973–1015. https://doi.org/10.1017/S00223....
 
5.
Barron, J. A., Bukry, D. & Poore, R. Z. 1984. Correlation of the middle Eocene Kellogg Shale of northern California. Micropaleontology 30: 138–170. https://doi.org/10.2307/148571....
 
6.
Bessudova, A. Y., Firsova, A. D. & Likhoshway, Y. V. 2022. Silica-scaled heterotrophic protists Rotosphaerida, Thaumatomonadida, and Centroplasthelida in the large continuous ecosystem connecting Lake Baikal to the Kara Sea. The Journal of Eukaryotic Microbiology 69: e12871. https://doi.org/10.1111/jeu.12....
 
7.
Bessudova, A. Y., Firsova, A. D., Bukin, Y., Kopyrina, L., Zakharova, Y. & Likhoshway, Y. V. 2023a. Under-ice development of silica-scaled chrysophytes with different trophic mode in two ultraoligotrophic lakes of Yakutia. Diversity 15: 326. https://doi.org/10.3390/d15030....
 
8.
Bessudova, A. Y., Likhoshway, Y. V., Firsova, A. D., Mitrofanova, E., Koveshnikov, M., Soromotin, A., Khoroshavin, V. & Kirillov, V. 2023b. Small organisms in a large river: What provides the high diversity of scaled chrysophytes in the Ob River? Water 15: 3054. https://doi.org/10.3390/w15173....
 
9.
Bukry, D. 1975a. Silicoflagellate and coccolith stratigraphy, Deep Sea Drilling Project, Leg 29. Initial Reports of the Deep Sea Drilling Project 29: 845–872.
 
10.
Bukry, D. 1975b. Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling Project, Leg 32. Initial Reports of the Deep Sea Drilling Project 32: 677–701.
 
11.
Bukry, D. 1976a. Cenozoic silicoflagellate and coccolith stratigraphy, South Atlantic Ocean, Deep Sea Drilling Project Leg 36. Initial Reports of the Deep Sea Drilling Project 35: 885–917.
 
12.
Bukry, D. 1976b. Silicoflagellate and coccolith stratigraphy, Norwegian-Greenland Sea, Deep Sea Drilling Project Leg 38. Initial Reports of the Deep Sea Drilling Project 38: 843–855.
 
13.
Bukry, D. 1976c. Silicoflagellate and coccolith stratigraphy, southeastern Pacific Ocean, Deep Sea Drilling Project Leg 34. Initial Reports of the Deep Sea Drilling Project 34: 715–735.
 
14.
Bukry, D. 1977. Coccolith and silicoflagellate stratigraphy, South Atlantic Ocean, Deep Sea Drilling Project Leg 39. Initial Reports of the Deep Sea Drilling Project 39: 825–839.
 
15.
Bukry, D. 1978a. Cenozoic silicoflagellate and coccolith stratigraphy, northwestern Atlantic Ocean, Deep Sea Drilling Project Leg 43. Initial Reports of the Deep Sea Drilling Project 44: 775–805.
 
16.
Bukry, D. 1978b. Cenozoic coccolith, silicoflagellate, and diatom stratigraphy, Deep Sea Drilling Project Leg 44. Initial Reports of the Deep Sea Drilling Project 44: 807–863.
 
17.
Bukry, D. 1980. Silicoflagellate biostratigraphy and paleoecology in the eastern Equatorial Pacific, Deep Sea Drilling Project Leg 54. Initial Reports of the Deep Sea Drilling Project 54: 545–573.
 
18.
Bukry, D. 1981a. Silicoflagellate stratigraphy of offshore California and Baja California, Deep Sea Drilling Project Leg 63. Initial Reports of the Deep Sea Drilling Project 63: 539–557.
 
19.
Bukry, D. 1981b. Synthesis of silicoflagellate stratigraphy from Maestrichtian to Quaternary marine sediment. Society for Sedimentary Geology Special Publication 32: 433–444. https://doi.org/10.2110/pec.81....
 
20.
Bukry, D. 1982. Cenozoic silicoflagellates from offshore Guatemala, Deep Sea Drilling Project Site 495. Initial Reports of the Deep Sea Drilling Project 67: 425–445.
 
21.
Bukry, D. 1983. Upper Cenozoic silicoflagellates from offshore Ecuador, Deep Sea Drilling Project Sit 504. Initial Reports of the Deep Sea Drilling Project 69: 321–342.
 
22.
Bukry, D. 1991. Oligocene and Quaternary silicoflagellates from the Kerguelen Plateau. Proceedings of the Ocean Drilling Program, Scientific Results 119: 933–934.
 
23.
Bukry, D. & Foster, J. H. 1973. Silicoflagellate and diatom stratigraphy, Leg 16, Deep Sea Drilling Project Initial Reports of the Deep Sea Drilling Project 16: 815–871.
 
24.
Bukry, D. & Monechi, S. 1985. Late Cenozoic silicoflagellates from the northwest Pacific, Deep Sea Drilling Project Leg 86: Pale-otemperature trends and texture classification. Initial Reports of the Deep Sea Drilling Project 86: 367–397.
 
25.
Burki, F. 2014. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbor Perspectives in Biology 6: a016147. https://doi.org/10.1101/cshper....
 
26.
Chang, F. H., Sutherland, J. & Bradford-Grieve, J. 2017. Taxonomic revision of Dictyochales (Dictyochophyceae) based on morphological, ultrastructural, biochemical and molecular data. Phycological Research 65: 235–247. https://doi.org/10.1111/pre.12....
 
27.
Ciesielski, P. F. 1975. Biostratigraphy and paleoecology of Neogene and Oligocene silicoflagellates from cores recovered during Antarctic Leg 28, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 28: 625–691.
 
28.
Cohen, P. A. & Knoll, A. H. 2012. Scale microfossils from the Mid-Neoproterozoic Fifteenmile Group, Yukon Territory. Journal of Paleontology 86: 775–800. https://doi.org/10.1666/11-138....
 
29.
Cronberg, G. 1986. Chrysophycean cysts and scales in lake sediments: a review. In: Kristiansen, J. & Andersen, R. A. (eds), Chrysophytes: Aspects and Problems, pp. 281–315. Cambridge University Press, Cambridge.
 
30.
Derelle, R., López-García, P., Timpano, H. & Moreira, D. 2016. A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts). Molecular Biology and Evolution 33: 2890–2898. https://doi.org/10.1093/molbev....
 
31.
Desikachary, T. V. & Prema, P. 1996. Silicoflagellates (Dictyochophyceae). J. Cramer, Berlin.
 
32.
Dumitrică, P. 1978. Badenian silicoflagellates from Central Paratethys. In: Brestenská, E. (ed.), Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys, pp. 207–227. Veda, Bratislava.
 
33.
Esteban, G. F., Gooday, A. J. & Clarke, K. J. 2007. Siliceous scales of filose-amoebae (Pompholyxophryidae, Rotosphaerida) from deep Southern Ocean sediments, including first records for the Southern Hemisphere. Polar Biology 30: 945–950. https://doi.org/10.1007/s00300....
 
34.
Fenner, J. 1978. Cenozoic diatom biostratigraphy of the equatorial and southern Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project 39: 491–624.
 
35.
Firsova, A. D., Bessudova, A. Y. & Likhoshway, Y. V. 2017. New data of chrysophycean stomatocysts from Lake Baikal. Acta Biologica Sibirica 3: 113–122.
 
36.
Glezer, Z. I. 1970. Cryptogamic Plants of the USSR. Volume VII. Silicoflagellatophyceae. Israel Program for Scientific Translations for the National Science Foundation, Washington D.C.
 
37.
Graham, J. E., Wilcox, L. W. & Graham, L. E. 2008. Algae (2nd edition). Benjamin Cummings, San Francisco.
 
38.
Hajós, M. 1976. Upper Eocene and Lower Oligocene Diatomaceae, Archaeomonadaceae, and Silicoflagellatae in southwestern Pacific sediments, DSDP Leg 29. Initial Reports of the Deep Sea Drilling Project 35: 817–883.
 
39.
Haq, B. U. 1998. Silicoflagellates and ebridians. In: Haq, B. U. & Boer­sma, A. (eds), Introduction to Marine Micropaleontology, pp. 267–275. Elsevier, Amsterdam.
 
40.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A. & Zhang, Z. 2021. The Eocene-Oligocene transition: A review of marine and terrestrial proxy data, models and model-data comparisons. Climate of the Past 17: 269–315. https://doi.org/10.5194/cp-17-....
 
41.
Ichikawa, W., Shimizu, I. & Bachmann, A. 1967. Fossil silicoflagellates and their associated uncertain forms in Iida Diatomite, Noto Peninsula, Central Japan. Science Reports of the Kanazawa University 12: 143–172.
 
42.
Jordan, R. W. & McCartney, K. 2015. Stephanocha nom. nov., a replacement name for the illegitimate silicoflagellate genus Distephanus (Dictyophyceae). Phytotaxa 201: 177–187. https://doi.org/10.11646/phyto....
 
43.
Kaczmarska, I. 1982. Diatoms of the two Lower Oligocene diatomites from the Polish Carpathian Flysch. Acta Geologica Academiae Scientiarum Hungaricae 25: 39–47.
 
44.
Kaczmarska, I. & Ehrman, J. M. 2008. Poloniasira fryxelliana Kaczmarska and Ehrman, a new thalassiosiroid diatom (Bacillariophyta) from the Lower Oligocene diatomites in Polish Flysch Carpathians, southeast Poland. Nova Hedwigia, Beihefte 133: 217–230.
 
45.
Kaczmarska, I. & Ehrman, J. M. 2023. Parmalean and other siliceous nannofossils from the Oligocene Polish Flysch Carpathians. Acta Palaeontologica Polonica 68: 441–456. https://doi.org/10.4202/app.01....
 
46.
Kotlarczyk, J. 1982. Role of diatoms in sedimentation and biostratigraphy of the Polish Flysch Carpathians. Acta Geologica Academiae Scientiarum Hungaricae 25: 9–21.
 
47.
Kotlarczyk, J., Jerzmańska, A., Świdnicka, E. & Wiszniowska, T. 2006. A framework of ichthyofaunal stratigraphy of the Oligo-cene-Early Miocene strata of the Polish Outer Carpathian Basin. Annales Societatis Geologorum Poloniae 76: 1–111.
 
48.
Kotlarczyk, J. & Kaczmarska, I. 1987. The two horizons with the Oligocene and Lower Miocene diatoms from the Polish Outer Car-pathians. Annales Societatis Geologorum Poloniae 57: 143–189.
 
49.
Kotlarczyk, J. & Lesniak, T. 1990. Lower Part of the Menilite Formation and Related Futoma Diatomite Member in the Skole Unit of the Polish Carpathians. Wydawnictwo Akademii Góniczo-Hutniczej, Kraków.
 
50.
Kotlarczyk, J. & Uchman, A. 2012. Integrated ichnology and ichthyology of the Oligocene Menilite Formation, Skole and Subsilesian nappes, Polish Carpathians: a proxy to oxygenation history. Palaeogeography, Palaeoclimatology, Palaeoecology 331–332: 104–118. https://doi.org/10.1016/j.pala....
 
51.
Ling, H. Y. 1985. Paleogene silicoflagellates and ebridians from the Goban Spur, northeastern Atlantic. Initial Reports of the Deep Sea Drilling Project 80: 663–668.
 
52.
Locker, S. & Martini, E. 1986. Silicoflagellates and some sponge spicules from the southwest Pacific, Deep Sea Drilling Project, Leg 90. Initial Reports of the Deep Sea Drilling Project 90: 887–924.
 
53.
Locker, S. & Martini, E. 1989. Cenozoic silicoflagellates, ebridians, and actiniscidians from the Vøring Plateau (ODP Leg 104). Pro-ceedings of the Ocean Drilling Program, Scientific Results 104: 543–585.
 
54.
Loeblich III, A. R., Loeblich, L. A., Tappan, H. & Loeblich Jr., A. R. 1968. Annotated Index of Fossil and Recent Silicoflagellates and Ebridians with Descriptions and Illustrations of Validly Proposed Taxa. The Geological Survey of America, Boulder.
 
55.
Lozar, F. & Mussa, M. 2003. Silicoflagellate biostratigraphy, Hole 1149A (ODP Leg 185, Nadezhda Basin, Northwestern Pacific). Proceedings of the Ocean Drilling Program, Scientific Results 185: 1–18.
 
56.
Margulis, L., Corliss, J. O., Melkonian, M. & Chapman, D. J., eds 1990. Handbook of Protoctista. Jones and Bartlett, Boston.
 
57.
Martínez-López, A., Álvarez-Gómez, I. G., Pérez-Cruz, L., Verdugo-Díaz, G. & Villegas-Aguilera, M. M., 2016. Production, exportation and preservation of silicoflagellates in Alfonso Basin, Gulf of California. Journal of Sea Research 109: 52–62. https://doi.org/10.1016/j.sear....
 
58.
Martini, E. 1982. Pliocene and Quaternary diatoms, silicoflagellates, sponge spicules, and endoskeletal dinoflagellates from the Philippine Sea, Deep Sea Drilling Project Legs 59 and 60. Initial Reports of the Deep Sea Drilling Project 60: 565–574.
 
59.
Martini, E. 1990. Tertiary and Quaternary silicoflagellates, actiniscidians, and ebridians from the Eastern Pacific off Peru (Leg 112). Proceedings of the Ocean Drilling Program, Scientific Results 112: 157–173.
 
60.
Martini, E. & Müller, C. 1976. Eocene to Pleistocene silicoflagellates from the Norwegian-Greenland Sea (DSDP Leg 38). Initial Reports of the Deep Sea Drilling Project 38: 857–895.
 
61.
McCartney, K. 1993. Silicoflagellates. In: Lipps, J. H. (ed.), Fossil prokaryotes and protists, pp. 143–154. Blackwell Scientific Publi-cations, Oxford.
 
62.
McCartney, K. & Wise Jr., S. W. 1987. Silicoflagellates and ebridians from the New Jersey Transect, Deep Sea Drilling Project Leg 93, Sites 604 and 605. Initial Reports of the Deep Sea Drilling Project 93: 801–814.
 
63.
McCartney, K. & Wise Jr., S. W. 1990. Cenozoic silicoflagellates and ebridians from ODP Leg 113: biostratigraphy and notes on morphologic variability. Proceedings of the Ocean Drilling Program, Scientific Results 113: 729–760.
 
64.
McCartney, K. & Witkowski, J. 2016. Cenozoic silicoflagellate skeletal morphology: a review and suggested terminology. Journal of Micropalaeontology 35: 179–189. https://doi.org/10.1144/jmpale....
 
65.
McCartney, K., Wise Jr., S. W., Harwood, D. M. & Gersonde, R. 1990. Enigmatic Lower Albian silicoflagellates from ODP Site 693: Progenitors of the order Silicoflagellata? Proceedings of the Ocean Drilling Program, Scientific Results 113: 427–442.
 
66.
McCartney, K., Churchill, S. & Woestendiek, L. 1995. Silicoflagellates and ebridians from Leg 138, eastern equatorial Pacific. Pro-ceedings of the Ocean Drilling Program, Scientific Results 138: 129–162.
 
67.
McCartney, K., Witkowski, J. & Harwood, D. M. 2010. Early evolution of the silicoflagellates during the Cretaceous. Marine Micropaleontology 77: 83–100. http://dx.doi.org/10.1016/j.ma....
 
68.
McCartney, K., Witkowski, J., Jordan, R. W., Abe, K., Januszkiewicz, A., Wrobel, R., Bak, M., & Soeding, E. 2022. Silicoflagellate evolution through the Cenozoic. Marine Micropaleontology 172: 1–18. https://doi.org/10.1016/j.marm....
 
69.
McCartney, K., Chakraborty, A., Ghosh, A. K., Soeding, E. & Rout, V. 2023. Diversity and evolution of late Eocene to late Oligocene silicoflagellates from IODP Expedition 378 Holes U1553A and U1553B, southwest Pacific Ocean. Marine Micropaleontology 179: 102215. https://doi.org/10.1016/j.marm....
 
70.
Olshtynska, O. P. 2013. Eocene and Early Oligocene silicoflagellates and ebridians from the Ukraine. Collection of Scientific Works of the Institute of Geological Sciences of the NAS of Ukraine 6: 131–135.
 
71.
Olshtynska, O. P. & Tsoy, I. 2018. Silicoflagellates of the Late Eocene to Early Oligocene of Eastern Paratethys (Azov Sea area of Ukraine). Nova Hedwigia, Beihefte 147: 141–150.
 
72.
Onodera, J. & Takahashi, K. 2009. Taxonomy and biostratigraphy of middle Eocene silicoflagellates in the central Arctic Basin. Micropaleontology 55: 209–248.
 
73.
Palcu, D. V. & Krijgsman, W. 2023. The dire straits of Paratethys: gateways to the anoxic giant of Eurasia. Geological Society of London Special Publications 523: 111. https://doi.org/10.1144/sp523-....
 
74.
Perch-Nielsen, K. 1975. Late Cretaceous to Pleistocene silicoflagellates from the southern southwest Pacific, DSDP, Leg 29. Initial Reports of the Deep Sea Drilling Project 29: 677–721.
 
75.
Perch-Nielsen, K. 1978. Eocene to Pliocene archaeomonads, ebridians, and endoskeletal dinoflagellates from the Norwegian Sea, DSDP Leg 38. Initial Reports of the Deep Sea Drilling Project 38-41 Supplement: 147–175.
 
76.
Picha, F. J. & Stranik, Z. 1999. Late Cretaceous to early Miocene deposits of the Carpathian foreland basin in southern Moravia. International Journal of Earth Sciences 88: 475–495. https://doi.org/10.1007/s00531....
 
77.
Sachsenhofer, R. F., Popov, S. V., Bechtel, A., Coric, S., Francu, J., Gratzer, R., Grunert, P., Kotarba, M., Mayer, J., Pupp, M., Rupprecht, B. J. & Vincent, S. J. 2017. Oligocene and Lower Miocene source rocks in the Paratethys: Palaeogeographical and stratigraphic controls. In: Simmons, M. D., Tari, G. C. & Okay, A. I. (eds), Petroleum Geology of the Black Sea – Geological Society of London Special Publications, pp. 267–306.
 
78.
Schellpeper, M. E. & Watkins, D. K. 1998. Oligocene to Early Miocene silicoflagellates from the Ivorian Basin, eastern equatorial Atlantic, Site 959. Proceedings of the Ocean Drilling Program, Scientific Results 159: 493–508.
 
79.
Shaw, C. A. & Ciesielski, P. F. 1983. Silicoflagellate biostratigraphy of Middle Eocene to Holocene Subantarctic sediments recovered by Deep Sea Drilling Project Leg 71. Initial Reports of the Deep Sea Drilling Project 71: 687–737.
 
80.
Siver, P. A. 2020. Remarkably preserved cysts of the extinct synurophyte, Mallomonas ampla, uncovered from a 48 Ma freshwater Eocene lake. Scientific Reports 10: 5204. https://doi.org/10.1038/s41598....
 
81.
Siver, P. A. & Lott, A. M. 2017. The scaled chrysophyte flora in freshwater ponds and lakes from Newfoundland, Canada, and their relationship to environmental variables. Cryptogamie Algologie 38: 325–347. http://dx.doi.org/10.7872/crya....
 
82.
Siver, P. A. & Lott, A. M. 2023. History of the Giraffe Pipe locality inferred from microfossil remains: A thriving freshwater ecosystem near the Arctic Circle during the warm Eocene. Journal of Paleontology 97: 271–291. https://doi.org/10.1017/jpa.20....
 
83.
Siver, P. A. & Skogstad, A. 2021. A first account of the heterotrophic eukaryote Rabdiophrys Rainer from the fossil record and de-scription of a new species from an ancient Eocene Arctic freshwater lake. European Journal of Protistology 82: 125857. https://doi.org/10.1016/j.ejop....
 
84.
Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. 2021. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nature Communications 12: 1879. https://doi.org/10.1038/s41467....
 
85.
Strassert, J. F. H., Jamy, M., Mylnikov, A. P., Tikhonenkov, D. V. & Burki, F. 2019. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Molecular Biology and Evolution 36: 757–765. https://doi.org/10.1093/molbev....
 
86.
Tikhonenkov, D. V., Jamy, M., Borodina, A. S., Belyaev, A. O., Zagumyonnyi, D. G., Prokina, K. I., Mylnikov, A. P., Burki, F. & Karpov, S. A. 2022. On the origin of TSAR: Morphology, diversity and phylogeny of Telonemia. Open Biology 12: 210325. https://doi.org/10.1098/rsob.2....
 
87.
Tsutsui, H., Jordan, R. W., Nishiwaki, N. & Nishida, S. 2018. Morphometric analysis of early Eocene Corbisema skeletons (Silicoflagellata) in Mors, Denmark. Journal of Micropalaeontology 37: 283–293. https://doi.org/10.5194/jm-37-....
 
88.
Van den Hoek, C., Mann, D. G., & Jahns, H. M. 1995. Algae: an Introduction to Phycology. Cambridge University Press, Cambridge.
 
89.
Yoshida, M., Noël, M.-H., Nakayama, T., Naganuma, T. & Inouye, I. 2006. A haptophyte bearing siliceous scales: Ultrastructure and phylogenetic position of Hyalolithus neolepsis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). Protist 157: 213–234. https://doi.org/10.1016/j.prot....
 
eISSN:2657-5000
ISSN:2544-7459
Journals System - logo
Scroll to top