ORIGINAL ARTICLE
Demographic history and range modelling of the East Mediterranean Abies cilicica
 
More details
Hide details
1
Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
 
2
University of Zielona Góra, Institute of Biological Sciences, Szafrana 1, 65-516, Zielona Góra, Poland
 
3
Poznań University of Life Sciences, Department of Botany, Wojska Polskiego 71c, 60-625 Poznań, Poland
 
4
Poznań University of Life Sciences, Department of Silviculture, Wojska Polskiego 71a, 60-625 Poznań, Poland
 
 
Online publication date: 2021-12-31
 
 
Publication date: 2021-12-31
 
 
Plant and Fungal Systematics 2021; 66(2): 122-132
 
KEYWORDS
ABSTRACT
The Mediterranean Basin is one of the 36 global hotspots of biodiversity and it is rich in endemic tree species. The complex geological history of the region throughout the Neogene and Quaternary periods that were marked with several palaeoclimatic transformations was a major factor triggering the genetic divergence of lineages in tree species in the region. The ongoing global climate change is the main factor threatening Mediterranean biodiversity. The risk of population decline related to aridization is the highest in the case of endemics, especially for cold-adapted conifers, such as Abies cilicica. The Cilician fir grows in the East Mediterranean mountains that constitute a local centre of endemism within the region. The species range is fragmented and small-size populations prevail. Previous studies have suggested that the last glacial cycle led to a significant reduction in the species range and might have initiated genetic divergence. As a result, two lineages are currently recognized at the subspecies level, A. cilicica subsp. isaurica (Turkey) and A. cilicica subsp. cilicica (Turkey, Syria, and Lebanon). The predictions about the impact of future climate changes in the East Mediterranean suggest a profound reduction of precipitation and overall warming that may put the remnant populations of A. cilicica at a risk of decline. Here, we used the Bayesian approach to investigate the demographic history of endemic A. cilicica. Specifically, we estimated the probable time of the intraspecies divergence to verify previous assumptions about the species’ evolutionary history. Additionally, niche modelling was used to outline the potential range of changes in the past and to indicate glacial refugia in where the species persisted climate crisis. This approach was also used to explore the possible influence of the future climate changes on the distribution of A. cilicica in the region. Our results demonstrate that the divergence between the Lebanese and the Turkish populations that occurred ~220 ka years BP coincided with the Riss glaciation. According to palaeoecological data, in the East Mediterranean, that glacial period caused a severe reduction in the populations of woody species due to the aridity of the climate. At that time, the Lebanese-Syrian part of the range was likely disconnected from the main range. The second split was induced by the last glacial cycle ~60 ka years BP and led to the separation of the Central Taurus and East Taurus population and, consequently, to the formation of the two subspecies. Niche modelling for the last glacial maximum has allowed us to locate the probable refugia for A. cilicica in the western Anatolia and Syria-Lebanon area. A projection of the future possible distribution of the species indicates a serious reduction of the range during this century.
FUNDING
This work was founded by Polish National Science Centre (project number: N N303 412136), Institute of Dendrology, Polish Academy of Sciences and Poznań University of Life Sciences.
 
REFERENCES (60)
1.
Albassatneh, M. C., Escudero, M., Monnet, A.-C., Arroyo, J., Bacchetta, G., Bagnoli, F., Dimopoulos, P., Hampe, A., Leriche, A., Médail, F., Nikolic, T., Ponger, L., Vendramin, G. G. & Fady, B. 2021. Spatial patterns of genus-level phylogenetic endemism in the tree flora of Mediterranean Europe. Diversity and Distributions 27: 913–928. https://doi.org/10.1111/ddi.13....
 
2.
Atalay, I., Efe, R. & Öztürk, M. 2014. Ecology and Classification of Forests in Turkey. Procedia – Social and Behavioral Sciences 120: 788–805. https://doi.org/10.1016/j.sbsp....
 
3.
Aussenac, G. 2002. Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Annals of Forest Science 59: 823–832. https://doi.org/10.1051/forest....
 
4.
Awad, L., Fady, B., Khater, C., Roig, A. & Cheddadi, R. 2014. Genetic Structure and Diversity of the Endangered Fir Tree of Lebanon (Abies cilicica Carr.): Implications for Conservation. PLoS ONE 9: e90086. https://doi.org/10.1371/journa....
 
5.
Bagnoli, F., Tsuda, Y., Fineschi, S., Bruschi, P., Magri, D., Zhelev, P., Paule, L., Simeone, M. C., González-Martínez, S. C. & Vendramin, G. G. 2015. Combining molecular and fossil data to infer demographic history of Quercus cerris: Insights on European eastern glacial refugia. Journal of Biogeography 43: 679–690. https://doi.org/10.1111/jbi.12....
 
6.
Boratyńska, K., Sękiewicz, K., Jasińska, A. K., Tomaszewski, D., Iszkuło, G., Ok, T., Dagher-Kharrat, M. B. & Boratyński, A. 2015. Effect of geographic range discontinuity on taxonomic differentiation of Abies cilicica. Acta Societatis Botanicorum Poloniae 84: 419–430. https://doi.org/10.5586/asbp.2....
 
7.
Bucchignani, E., Mercogliano, P., Panitz, H.-J. & Montesarchio, M. 2018. Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Advances in Climate Change Research 9: 66–80. https://doi.org/10.1016/j.accr....
 
8.
Cornuet, J.-M., Pudlo, P., Veyssier, J., Dehne-Garcia, A., Gautier, M., Leblois, R., Marin, J.-M. & Estoup, A. 2014. DIYABC ver. 2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30: 1187–1189. https://doi.org/10.1093/bioinf....
 
9.
Cremer, E., Liepelt, S., Sebastiani, F., Buonamici, A., Michalczyk, I. M., Ziegenhagen, B. & Vendramin, G. G. 2006. Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Molecular Ecology Notes 6: 374–376. https://doi.org/10.1111/j.1471....
 
10.
Dagher-Kharrat, M. B., Mariette, S., Lefèvre, F., Fady, B., Grenier-de March, G., Plomion, C. & Savouré, A. 2007. Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genetics & Genomes 3: 275–285. https://doi.org/10.1007/s11295....
 
11.
Dering, M., Kosiński, P., Wyka, T. P., Pers-Kamczyc, E., Boratyński, A., Boratyńska, K., Reich, P. B., Romo, A., Zadworny, M., Żytkowiak, R. & Oleksyn, J. 2017. Tertiary remnants and Holocene colonizers: Genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia. Diversity and Distributions 23: 540–555. https://doi.org/10.1111/ddi.12....
 
12.
Douaihy, B., Vendramin, G. G., Boratyński, A., Machon, N. & Bou Dagher-Kharrat, M. 2011. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB PLANTS plr003. https://doi.org/10.1093/aobpla....
 
13.
Dusar, B., Verstraeten, G., Notebaert, B. & Bakker, J. 2011. Holocene environmental change and its impact on sediment dynamics in the Eastern Mediterranean. Earth-Science Reviews 108: 137–157. https://doi.org/10.1016/j.ears....
 
14.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43–57. https://doi.org/10.1111/j.1472....
 
15.
Fady, B. & Conord, C. 2010. Macroecological patterns of species and genetic diversity in vascular plants of the Mediterranean basin. Diversity and Distributions 16: 53–64. https://doi.org/10.1111/j.1472....
 
16.
Fady, B., Lefèvre, F., Vendramin, G. G., Ambert, A., Régnier, C. & Bariteau, M. 2008. Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conservation Genetics 9: 85–95. https://doi.org/10.1007/s10592....
 
17.
Fady-Welterlen, B. 2005. Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 54: 905–910. https://doi.org/10.2307/250654....
 
18.
Farjon, A. 2010. Conifers of the world, pp.71–74. Brill Academic Publishers, Leiden.
 
19.
Gardner, M. & Knees, S. 2013. Abies cilicica. The IUCN red list of threatened species. Version 2014.2. www.iucnredlist.org.
 
20.
Gasse, F., Vidal, L., Develle, A.-L. & Van Campo, E. 2011. Hydrological variability in the Northern Levant: A 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary sequence. Climate of the Past 7: 1261–1284. https://doi.org/10.5194/cp-7-1....
 
21.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L. & Zhang, M. 2011. The Community Climate System Model Version 4. Journal of Climate 24: 4973–4991. https://doi.org/10.1175/2011JC....
 
22.
Havrdová, A., Douda, J., Krak, K., Vít, P., Hadincová, V., Zákravský, P. & Mandák, B. 2015. Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture. Molecular Ecology 24: 4759–4777. https://doi.org/10.1111/mec.13....
 
23.
Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. https://doi.org/10.1038/350160....
 
24.
Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T. & Pegion, P. 2012. On the Increased Frequency of Mediterranean Drought. Journal of Climate 25: 2146–2161. https://doi.org/10.1175/JCLI-D....
 
25.
Hrivnák, M., Paule, L., Krajmerová, D., Kulaç, Ş., Şevik, H., Turna, İ., Tvauri, I. & Gömöry, D. 2017. Genetic variation in Tertiary relics: The case of eastern-Mediterranean Abies (Pinaceae). Ecology and Evolution 7: 10018–10030. https://doi.org/10.1002/ece3.3....
 
26.
Jaramillo-Correa, J. P., Bagnoli, F., Grivet, D., Fady, B., Aravanopoulos, F. A., Vendramin, G. G. & González-Martínez, S. C. 2020. Evolutionary rate and genetic load in an emblematic Mediterranean tree following an ancient and prolonged population collapse. Molecular Ecology 29: 4797–4811. https://doi.org/10.1111/mec.15....
 
27.
Kaniewski, D., Laet, V. D., Paulissen, E. & Waelkens, M. 2007. Long-term effects of human impact on mountainous ecosystems, western Taurus Mountains, Turkey. Journal of Biogeography 34: 1975–1997.
 
28.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P. & Kessler, M. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4: 170122. https://doi.org/10.1038/sdata.....
 
29.
Kavgaci, A., Basaran, S. & Basaran, M. A. 2010. Cedar forest communities in Western Antalya (Taurus Mountains, Turkey). Plant Biosystems 144: 271–287. doi:10.1080/11263501003690720.
 
30.
Kaya, Z. & Raynal, D. J. 2001. Biodiversity and conservation of Turkish forests. Biological Conservation 97: 131–141. https://doi.org/10.1016/S0006-....
 
31.
Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., Hannides, C., Lange, M. A., Tanarhte, M., Tyrlis, E. & Xoplaki, E. 2012. Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change 114: 667–687. https://doi.org/10.1007/s10584....
 
32.
Linares, J. C. 2011. Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: The roles of long-term climatic change and glacial refugia. Journal of Biogeography 38: 619–630. https://doi.org/10.1111/j.1365....
 
33.
Litkowiec, M., Sękiewicz, K., Romo, A., Ok, T., Bou Dagher-Kharrat, M., Jasińska, A. K., Sobierajska, K., Boratyńska, K. & Boratyński, A. 2021. Biogeography and relationships of the Abies taxa from the Mediterranean and central Europe regions as revealed by nuclear DNA markers and needle structural characters. Forest Ecology and Management 479: 118606. https://doi.org/10.1016/j.fore....
 
34.
Magri, D. 2008. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). Journal of Biogeography 35: 450–463. https://doi.org/10.1111/j.1365....
 
35.
Magri, D., Fineschi, S., Bellarosa, R., Buonamici, A., Sebastiani, F., Schirone, B., Simeone, M. C. & Vendramin, G. G. 2007. The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Molecular Ecology 16: 5259–5266. https://doi.org/10.1111/j.1365....
 
36.
Mariotti, A., Zeng, N., Yoon, J.-H., Artale, V., Navarra, A., Alpert, P. & Li, L. Z. X. 2008. Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environmental Research Letters 3: 044001. https://doi.org/10.1088/1748-9....
 
37.
Marqués, L., Camarero, J. J., Gazol, A. & Zavala, M. A. 2016. Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. Forest Ecology and Management 381: 157–167. https://doi.org/10.1016/j.fore....
 
38.
Mayol, M., Riba, M., González-Martínez, S. C., Bagnoli, F., de Beaulieu, J.-L., Berganzo, E., Burgarella, C., Dubreuil, M., Krajmerová, D., Paule, L., Romšáková, I., Vettori, C., Vincenot, L. & Vendramin, G. G. 2015. Adapting through glacial cycles: Insights from a long-lived tree (Taxus baccata ). New Phytologist 208: 973–986. https://doi.org/10.1111/nph.13....
 
39.
Médail, F. & Quezel, P. 1997. Hot-Spots Analysis for Conservation of Plant Biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden 84: 112–127. https://doi.org/10.2307/239995....
 
40.
Médail, F., Monnet, A.-C., Pavon, D., Nikolic, T., Dimopoulos, P., Bacchetta, G., Arroyo, J., Barina, Z., Albassatneh, M. C., Domina, G., Fady, B., Matevski, V., Mifsud, S. & Leriche, A. 2019. What is a tree in the Mediterranean Basin hotspot? A critical analysis. Forest Ecosystems 6: 17. https://doi.org/10.1186/s40663....
 
41.
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. 2011. Global biodiversity conservation: the critical role of hotspots. In: Zachos, F. & Habel, J. (eds), Biodiversity Hotspots. pp. 3–22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-....
 
42.
Navarro-Cerrillo, R. M., Manzanedo, R. D., Rodriguez-Vallejo, C., Gazol, A., Palacios-Rodríguez, G. & Camarero, J. J. 2020. Competition modulates the response of growth to climate in pure and mixed Abies pinsapo subsp. maroccana forests in northern Morocco. Forest Ecology and Management 459: 117847. https://doi.org/10.1016/j.fore....
 
43.
Petit, R. J., Brewer, S., Bordács, S., de Burge, K., Cheddadi, R., Coart, E., Cottrell, J., Csaikl, U. M., van Damh, B., Dean, J. D., Espinel, S., Finesch, S., Finkeldey, R., Glaz, I., Goicoechea, P. G., Jensenn, J. S., Königo, A. O., Lowe, A. J., Madsen, S. F., Mátyás, G., Munro, R. C., Popescu, F., Slade, D., Tabbener, H., de Vriesh, S. G. M., Ziegenhagen, B., de Beaulieu J-L. & Kremer, A. 2002. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156: 49–74. https://doi.org/10.1016/S0378-....
 
44.
Phillips, S. J., Dudík, M. & Schapire, R. E. 2004. A maximum entropy approach to species distribution modeling. In: Proceedings of the Twenty-First International Conference on Machine Learning, (ACM), p. 83. http://dx.doi.org/10.1145/1015....
 
45.
Pickarski, N. & Litt, T. 2017. A new high-resolution pollen sequence at Lake Van, Turkey: Insights into penultimate interglacial–glacial climate change on vegetation history. Climate of the Past 13: 689–710. https://doi.org/10.5194/cp-13-....
 
46.
Pickarski, N., Kwiecien, O., Langgut, D. & Litt, T. 2015. Abrupt climate and vegetation variability of eastern Anatolia during the last glacial. Climate of the Past 11: 1491–1505.
 
47.
Popov, S. V., Shcherba, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarin, O. S. & Magyar, I. 2006. Late Miocene to Pliocene paleogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 238: 91–106.
 
48.
QGIS.org. 2021. QGIS Geographic Information System. QGIS Association. http://www.qgis.org.
 
49.
Roberts, D. R. & Hamann, A. 2015. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proceedings of the Royal Society B: Biological Sciences 282: 20142903. https://doi.org/10.1098/rspb.2....
 
50.
Ruiz-Labourdette, D., Schmitz, M. F. & Pineda, F. D. 2013. Changes in tree species composition in Mediterranean mountains under climate change: Indicators for conservation planning. Ecological Indicators 24: 310–323. https://doi.org/10.1016/j.ecol....
 
51.
Scotti-Saintagne, C., Giovannelli, G., Scotti, I., Roig, A., Spanu, I., Vendramin, G. G., Guibal, F. & Fady, B. 2019. Recent, Late Pleistocene fragmentation shaped the phylogeographic structure of the European black pine (Pinus nigra Arnold). Tree Genetics & Genomes 15: 76. https://doi.org/10.1007/s11295....
 
52.
Sękiewicz, K., Dering, M., Sękiewicz, M., Boratyńska, K., Iszkuło, G., Litkowiec, M., Ok, T., Dagher-Kharrat, M. B. & Boratyński, A. 2015. Effect of geographic range discontinuity on species differentiation-East-Mediterranean Abies cilicica: A case study. Tree Genetics & Genomes 11. https://doi.org/10.1007/s11295....
 
53.
Sękiewicz, K., Dering, M., Romo, A., Dagher-Kharrat, M. B., Boratyńska, K., Ok, T. & Boratyński, A. 2018. Phylogenetic and biogeographic insights into long-lived Mediterranean Cupressus taxa with a schizo-endemic distribution and Tertiary origin. Botanical Journal of the Linnean Society 188: 190–212. https://doi.org/10.1093/botlin....
 
54.
Sobierajska, K., Boratyńska, K., Jasińska, A., Dering, M., Ok, T., Douaihy, B., Bou Dagher-Kharrat, M., Romo, A. & Boratyński, A. 2016. Effect of the Aegean Sea barrier between Europe and Asia on differentiation in Juniperus drupacea (Cupressaceae). Botanical Journal of the Linnean Society 180: 365–385. https://doi.org/10.1111/boj.12....
 
55.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P. & Dosio, A. 2018. Will drought events become more frequent and severe in Europe? International Journal of Climatology 38: 1718–1736. https://doi.org/10.1002/joc.52....
 
56.
Talhouk, S., Zurayk, R. & Khuri, S. 2003. Conifer conservation in Lebanon. In: Mill, R. (ed.) Proceedings of the Fourth International Conifer Conference: conifers for the Future? International Society Horticultural Science, Leuven 1, pp. 411–414.
 
57.
Tollefsrud, M. M., Latałowa, M., van der Knaap, W. O., Brochmann, C. & Sperisen, C. 2015. Late Quaternary history of North Eurasian Norway spruce (Picea abies) and Siberian spruce (Picea obovata) inferred from macrofossils, pollen and cytoplasmic DNA variation. Journal of Biogeography 42: 1431–1442. https://doi.org/10.1111/jbi.12....
 
58.
Walas, Ł., Sobierajska, K., Ok, T., Dönmez, A. A., Kanoğlu, S. S., Dagher-Kharrat, M. B., Douaihy, B., Romo, A., Stephan, J., Jasińska, A. K. & Boratyński, A. 2019. Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: the Juniperus drupacea case study. Regional Environmental Change 19: 1507–1520. https://doi.org/10.1007/s10113....
 
59.
Wang, Z., Chang, Y. I., Ying, Z., Zhu, L. & Yang, Y. 2007. A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve. Bioinformatics 23: 2788–2794.
 
60.
Zittis, G. 2018. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Theoretical and Applied Climatology 134: 1207–1230.
 
eISSN:2657-5000
ISSN:2544-7459
Journals System - logo
Scroll to top