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Abstract. In this study, we analyzed the genetic diversity within Usnea flavocardia, a wide-
spread species found in all continents except Antarctica. The species is characterized by
a shrubby thallus growth form, the presence of soralia, a yellow central axis and/or the
presence of red dots on the cortex. Using ITS rDNA and two protein-coding genes (mcm?7
and rpbl) in a multispecies coalescent (MSC) approach, we showed that U. flavocardia
comprises five different lineages, four of which can be considered as putative new species.
Each of the five lineages, except one, is characterized by specific chemical compounds.
Within the outgroup that was used in this study, we furthermore showed that U. gaudi-
chaudii and U. eulychniae, both endemic to Chile, constitute a new major clade in the
subgenus Usnea s.str.
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Introduction

In lichenized Ascomycetes species, delimitation has
always been challenging due to the often-extreme var-
iability characterizing these organisms. Because lichens
are perennial, long-lived organisms, they are especially
subject to changing environmental conditions affecting
their external morphology in multiple ways (Pintado et al.
1997; Nayaka et al. 2009; Vondrak et al. 2010; Leavitt
etal. 2011; Pérez-Ortega et al. 2012; Muggia et al. 2013).
In large foliaceous and fruticose lichens, delineating spe-
cies boundaries using morphology only, as it was the
case in early times of lichen systematics, has often been
a puzzle for lichen taxonomists (e.g., Printzen 2009).
Later, the use of chemical substances produced by these
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symbiotic organisms resolved many problems, but added
new challenges at the same time (Culberson 1969; Brodo
1978, 1986; Egan 1986). In the last 30 years, the use of
molecular markers has revolutionized systematics and
lichen taxonomy in which most revisions published today
are primarily based on molecular data (Miadlikowska
& Lutzoni 2000; Leavitt et al. 2011; Otalora et al. 2014;
Spribille et al. 2014; Zhao et al. 2016; Kistenich et al.
2018; Barcenas-Pefia et al. 2023; Davydov et al. 2024).
However, the road ahead is long and still full of obsta-
cles and challenges even using molecular markers. For
instance, recognizing independent evolutionary lineages
can be problematic since evolutionary processes, such as
selection, introgression and gene flow, as well as incom-
plete lineage sorting (ILS) might lead to misinterpretation
while delimiting species (Naciri & Linder 2015). At least
one of the former processes, ILS, that strongly impacts
species delimitation with recent divergence histories, is
now considered within the multispecies coalescent model
(MSC, Yang & Rannala 2010) as implemented in several
software programs used for species delimitation based
on DNA sequence data (Jones et al. 2015; Jones 2017).
Usnea Adans constitutes a strongly supported mono-
phyletic lineage within the family Parmeliaceae (Crespo
et al. 2007). The genus is characterized by the presence
of usnic acid in the cortex and by shrubby to pendant
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thalli with radially symmetrical branches containing
a central elastic axis made of chondroidal tissue (Clerc
1998; Ohmura 2001). Until the late 20" century, the world
monograph of Motyka (1936-1938) was considered as the
cornerstone of the genus systematics, with 451 accepted
species, of which 229 (52%) were newly described.
Although several taxonomic treatments were published
during the last decades (Awasthi 1986; Clerc 1998, 2004,
2011; Halonen et al. 1998; Stevens 1999; Ohmura 2001,
2012; Hinds et al. 2007; Rodriguez et al. 2011; Truong
et al. 2011, 2013b; Truong & Clerc 2012, 2013; Herre-
ra-Campos 2016; Gerlach et al. 2017, 2020; Bungartz
et al. 2018; Clerc & Otte 2018), the genus Usnea remains
one of the most difficult genera in lichen systematics. For
instance, the high phenotype variability of many Usnea
species (Swinscow & Krog 1978; Clerc 1987, 1998) has
led to more than 1,200 described species worldwide.
Today, the estimated number of Usnea species varies from
350 to over 400 taxa (Nadel & Clerc 2022). According
to previous phylogenies, the genus Usnea is divided into
4 clades named USNEA-1 to USNEA-4 (Truong et al.
2013a; Liicking et al. 2020). In addition, phylogenetic
analyses carried out within the Usnea cornuta group high-
lighted the importance of secondary chemistry to delimit
species by showing that several clades were characterized
by a specific chemotype (Gerlach et al. 2019, 2020). This
led to the description of several new species, all of them
being recognized by subtle morphological and anatom-
ical characters previously overlooked in this aggregate
(Gerlach et al. 2020). Therefore, taxonomic significance
of chemotypes, as well as the existence of previously
undetected, subtle morphological and anatomical charac-
ters in many Usnea species remain to be investigated in
light of DNA analysis. Liicking et al. (2020) mentioned
that only 30% of the known accepted species in Usnea
s.lat. were so far sequenced with both taxonomic and
geographic bias. In this context, it is clear that we are
still far from knowing the final word on the number of
species within this genus.

In this study, we aim to clarify several issues in Usnea
flavocardia Rasanen using molecular tools. Usnea flavo-
cardia is easily recognized by its short, shrubby sorediate
thallus, its yellow pigmented medulla around the central
axis and/or the presence of cortical red dots (Clerc 2007).
Clerc (1984) described Usnea wirthii P. Clerc as a species
containing psoromic acid based on material collected in
south-western France by the Swiss lichenologist Eduard
Frey. Later, Isabelle Tavares from Berkeley University
drew Clerc’s attention to the fact that Ridsénen (1936)
had already described a species from central-southern
Chile named Usnea flavocardia characterized by a yellow
central axis, as in U. wirthii, but with norstictic acid in
the medulla instead of psoromic acid. Clerc (2004) conse-
quently reduced U. wirthii to synonymy with U. flavocar-
dia. However, looking at the important chemical diversity
within the group, as well as discovering further herbarium
material recently collected in the Andes, we suspected
that the systematics of this group is much more complex
than currently understood. The aims of this article are (1)

to test that all the specimens U. flavocardia group fall
within USNEA-3 as suggested by Truong et al. (2011), but
only based on one sample; (2) to determine whether the
observed chemical diversity corresponds to an equivalent
genetic diversity and whether the psoromic (U. wirthii)
and the norstictic (U. flavocardia) strains are genetically
identical, thus supporting the synonymy proposed by
Clerc (2004); and (3) to take the opportunity of our broad
sampling to place two endemic species from Chile within
the Usnea main clades. This study presents the results of
a worldwide study of the Usnea flavocardia group based
on chemical and molecular data.

Materials and methods
Taxon sampling

We sampled tissue from 45 Usnea specimens identified
as belonging to the U. flavocardia group following Clerc
(1998, 2007). All of the former specimens were character-
ized by a short, shrubby, sorediate thallus with a yellow
pigmented medulla around the central axis and/or the pres-
ence of cortical red dots. Seventeen specimens contained
psoromic acid and were identified as U. wirthii. Eleven
specimens contained norstictic acid and were identified
as U. flavocardia s.str. An additional 17 specimens had
a different chemistry (see Fig. 1).

Our sampling covered a broad geographical area
including Australia (3), Brazil (3), Canada (1), the Canary
Islands (4), Chile (15), Costa Rica (2), the Czech Repub-
lic (1), France (2), Portugal (3), New Zealand (2), Swit-
zerland (2), Taiwan (2), Tanzania (1), the Netherlands
(1) and the USA (3). All of the Chilean samples were
collected during a field trip conducted in 2019 by PC, DR
and IP. The remaining U. flavocardia samples were pro-
vided by some of the other authors of this paper (TG, AG,
RH and YO). Altogether, the sampling included 77 speci-
mens (26 species) selected to represent all clades defined
by Truong et al. (2013a) in the subgenus Usnea s.str. This
sampling allowed to test for the belonging of the U. flavo-
cardia group to USNEA-3 with regards to its sister group
USNEA-4 (Truong et al. 2013a). Taking advantage of this
large sampling, we added two endemic Usnea species
collected in the Atacama Desert, U. gaudichaudii Motyka
(3 specimens) and U. eulychniae Follmann (1 specimen)
to determine their phylogenetic position within subgenus
Usnea s.str. Finally, U. durietzii (2 specimens for which
only ITS was retrieved from GenBank) was also included
to test whether and how the latter species, which also
displays a reddish spotted pigmentation in the basal part
of its main branches, is related to Usnea flavocardia.
The voucher material sequenced by Wirtz et al. (2006)
consists of several dozen thalli corresponding to two
different species, one of which is indeed U. durietzii.
Unfortunately, no thallus was marked as having been
sequenced and uncertainty therefore remains as to the
identity of the sequenced specimens. All information
about the 128 specimens used in this study is given in
Table 1. All specimens newly sequenced are preserved
in the G fungarium.
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Figure 1. Species tree from STACEY analysis of the Usnea flavocardia aggregate nested into USNEA-3 as described by Truong et al. (2013a)
with specimen localities colored according to the map on the lower side and chemotypes on the right side (SAL: salazinic acid STI: stictic acid;
NOR: norstictic acid; PSO: psoromic acid; THA: thamnolic acid; BAR: barbatic acid; FA: fatty acids). The whole phylogeny is inserted on the
left with the USNEA-3 clade highlighted in grey. Only posterior probabilities (PP) higher than 0.9 are shown above branches.
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Chemical analyses
922228828 32535 5 . : ,
J3IFsS88iSdegSS552 In Usnea, thin-layer chromatography (TLC) is a major
Ssagdddadadonnnn= ies identificati ~
SSE xS ST S T tool for species identification. Secondary metabolites of all
MMSS55555353MMMMMYD specimens studied and cited in this paper were determined
by TLC based on standard procedures using solvent sys-
o D D = oo ~ tems A, B and C (Culberson & Ammann 1979), with sol-
23 addnedndldEIFIeS . .
e N N A R R R RS R vent B modified following Culberson & Johnson (1982).
SEnBEiincniEEEEEe
CLUE9s5555s5552922e2(S8 DNA extraction and amplification and alignments
DNA was extracted from a total of 54 specimens:
e AN OmEmes®aD oS Usnea ﬂavocaffdia (45 spec%mens), U. gaudichaudii and
§ 5232222223238 8&Xalx U. lusitanica ined. (3 specimens each), U. eulychniae,
S AL 82883AANg g . .
S o % ErrEesrena s 3 % U. esperantiana and U. dasaea (1 specimen each). In
CL39553353535353g22s4 8 each case, an entire branch of the specimen (algal and
fungal tissues) was used for DNA extraction. We applied
a modified protocol from Zolan & Pukkila (1986), i.e.,
i h n ot n ot e e e e en en an SDS-Phenol-Chloroform protocol with 2% sodium
dodecyl phosphate (SDS) to break the cell walls and
a Phenol:Chloroform:IAA mix (15:24:1) to remove pro-
teins. We also used 3 DNA extracts from U. erinacea
[ = - N~ NI NI~ N - N~ N> N NI N . . .
R (2 specimens) and U. rubicunda (1 specimen; Table 1),
fEddEE S s=a88 S 3 previously obtained by Gerlach et al. (2019) for which
E 2 B E 2 E B E E E BIEEE IR only the Internal Transcribed Spacer (ITS) was sequenced.
= < = 88 B e = R
2828282838383 83 002207 For the molecular studies we used three markers that
oo egssss s already showed good efficacy in separating the differ-
ent clades within the subgenus Usnea s.str.: ITS, a pro-
tein-coding gene (mcm?7) and the largest subunit of RNA
polymerase II (rpbl) (Truong et al. 2013a; Mark et al.
g 2016; Truong & Clerc 2016; Gerlach et al. 2017, 2019;
oz a Commm K Table S1). For ITS, 54 PCR amplifications were performed
EoEgssEEbegeddd g using Us/TS4-R and UsITS3-F primers (Truong et al.
2013a). A total of 57 PCR amplifications were processed
& for each of mem7 using UsMCM7-R and UsMCM7-F
= = primers (Gerlach et al. 2017) and rpb! using primers
z z ) & P UsRPBI-R/UsRPBI-F (Gerlach et al. 2017) and primers
S Y- 2 5050 0D :
== =2 g EEBEEE Rpf-Usn 2R/Rpf-Usn 3F (Mark et al. 2016). Amplified
22 _ 2= § Oz = E = S 8 products were checked on a 1.5 or 2% agarose gel, stained
- = 2b3segp_aaanq with SYBER Green I (Thermo Fisher Scientific) and with
EEpe Szt ogsgges L . :
3 82782 R8L’ TSI a migration time ranging between 30 min. and 1 hour,
_c.:_:w:co_:gaggoov—oo .
282832532 %¢ 88 gdagd g depending on the fragment length. The PCR products
EE8EgEEEEE E ZE zE S E were then purified using NucleoFast© plates (Mache-
rey-Nagel) before being sent to Macrogene Europe for
T Sanger sequencing. PCR parameters were the same as in
5 = 2 Gerlach et al. (2019) for all primer pairs, except for Rpf-
= =="9====9g== g 2 .
SEESSEEE 882y Usn 2R/Rpf-Usn 3F for which we followed Mark et al.
mAamMOo@mAammn@@an s a oD (2016) recommendations. All the amplification conditions
are given in Table S1.
- _ - SRV The DNA sequences were assembled and corrected in
o . . .
B3B8 B3ugdg o Z za p z Sequencher software (Nishimura 2000). The alignment of
2225292292882 ¢ 8 DNA sequences was next generated using the ClustalW
Multiple Alignment with the default settings, as imple-
mented in BioEdit (Hall 1999), then manually corrected.
o 5 55 The corrected ITS alignment was quality-checked using
== 200 the GUIDANCE online server (Penn et al. 2010) which
] . . . . .
§3 S§88sss98sSyyysEs issued a good score and validated the alignment.
S S 58S SE8s88§§ 38 IS
§§-§§§§f\-§§§§§§§§§ S i delimitati lysi
SETSSTTTTSTEEEREE pecies delimitation analysis
T 3388888 ¢8¢8888¢ 8 8~ ; : ;
S S S EEEESEESEEEEiE To estimate the potential number of species, we used
SRRRRRRRRRRRRRRR|F STACEY version 1.2.5 (Jones et al. 2015; Jones 2017),
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a multispecies coalescent approach (MSC, Yang & Ran-
nala 2010), as implemented in BEAST 2.6.2 (Bouckaert
et al. 2014). We used U. subaranea Truong & P. Clerc
to root the tree according to Truong et al. (2013a) since
it belongs to the basal clade of the subgenus Usnea s.str.
(Clade I). Compared to other MSC approaches, STACEY
considers each specimen as a putative species, thus
avoiding improper assignment of individual sequences
to species that could seriously bias the analysis outcome.
This is a great advantage when the studied group is tax-
onomically poorly understood, as in lichens for which
STACEY has been successfully used in different stud-
ies (e.g., Kanz et al. 2015; Mark et al. 2016; Gerlach
et al. 2019; Boluda et al. 2019, 2021). STACEY analy-
sis eventually builds MSC clusters (MSCC) on pairwise
probabilities that two individuals fall within the same
cluster. The xml input file was prepared with the STACEY
template supplied by BEAUTI2 (Bouckaert et al. 2014).
Substitution models were determined using MEGA X
v10.0.5 (Kumar et al. 2018) as TN93 for ITS and JC69
for mem?7 and rpb1, respectively. We assumed a relaxed
exponential molecular clock with a clock rate of 1.0, an
offset of 0.0, and lower and upper bounds of 0.0 and 5.0,
respectively. The species tree priors were set as follows:
birth-death model with collapse height (¢) of 1.10™* and
a relative death rate of 0.5, as recommended by Jones
(2016). For the growth rate (bdcGrowthRte.t:Species),
we chose a log-normal distribution with a mean of 1 and
a standard deviation of 1.25. The initial value for node
collapse weight (@) was set at 0.5 according to a beta
distribution [0.0, 1.0], with alpha and beta parameters
set at 1.0. Population size was set to [0.0, 2000], under
popPriorScale, adding a Gamma distribution with param-
eters alpha = 2 and beta = 259. All the other parameters
were set as default.

The input xml file was run for 200 million generations
on three parallel chains, by sampling every 10,000 log
and 100,000 trees. Chain convergence was checked using
Tracer v1.7.1 (Rambaut et al. 2018). Species and genes
trees were combined using Log Combiner and summa-
rized using Tree Annotator v2.6.0 using a 10% burn-in.
The trees were viewed with Figtree v1.4.3 (Rambaut
2017). The resulting species tree file was run with Spe-
cies Delimitation Analyser (SDA; Jones et al. 2015; Jones
2016) to calculate the probability that pairs of specimens
belong to the same MSC cluster. We defined 10% of
burn-in, 1.10* of collapse height and 1.0 similarity cut
off. The output file was uploaded on RStudio v1.1.456
(R Team 2016) using the script provided by Jones et al.
(2015) and modified by Simon Crameri (https://github.
com/scrameri/smtools/tree/master/SpeciesDelimitation)
to get the similarity matrix.

Results

Sequence data

In this study, we generated 153 new sequences for the
genus Usnea from 57 specimens. A total of 13 sequences
failed (two and eleven for ITS and rpb1, respectively).

Among those, 123 were obtained from the 45 speci-
mens of U. flavocardia (73.3% of which were sequenced
for three loci and 22.2% for two loci). Twenty-six (26)
sequences were obtained from U. gaudichaudii, U. lusi-
tanica, U. dasaea U. eulychniae and U. esperantiana
(three, three, one, one and one specimen, respectively)
with only one rpbl failed sequence for U. eulychniae.
The remaining 4 sequences were obtained from the DNA
extracts of Gerlach et al. (2019) and helped to provide
sequences for three loci for most specimens (Table 1). We
obtained at least two sequences for 98.4% of our speci-
mens, except for the South American taxon U. durietzii
since only the ITS sequence was available on GenBank for
these. Overall, 88.3% of the specimens have three markers
(113 specimens), 10.2% display two markers (13 speci-
mens) and 1.5% display only one marker (2 specimens).
Among the 128 specimens analyzed, 1.6% are missing
ITS and mcem7, and 10.2% rpbl (Table 1). All sequences
were deposited in GenBank repository under accession
numbers PX105447-PX105498, PX095166-PX095220 and
PX103805-PX103850 for ITS, mcm7 and rpbl, respec-
tively. The data matrix consists of 505 nucleotide charac-
ters for ITS, 439 for mem?7 and 533 for rpb1, respectively.

Gene trees, species trees and supported lineages

In our study, we discovered a new highly supported clade
(Posterior Probabilities (PP) = 1), made up of two species,
Usnea gaudichaudii and U. eulychniae, endemic to Chile,
here named as USNEA-5 (Fig. 1 and Fig. S1) distinct
from USNEA-1, USNEA-2, USNEA-3 and USNEA-4
of Truong et al. (2013a).

Our study additionally shows that all specimens iden-
tified as U. flavocardia, as well as both specimens of
U. durietzii, fall within USNEA-3 according to Truong
et al. (2013a).

Within U. flavocardia, at least four different lineages
were detected with high posterior probabilities (PP > 0.96;
lineages 1, 2, 3 and 4) (Fig. 1). Lineages 1 and 2 form
a monophyletic clade (PP=1) with which the relation-
ship with lineages 3 and 4 is not resolved. One additional
clade, lineage 5, is not supported (PP < 0.8). The topolo-
gies of individual gene trees were generally in agreement
with each other and with that of the species tree with the
notable exception of lineage 5 (Figs S2—S4). This lineage
is only supported for mem7 (PP=0.97). The specimens
with psoromic acid (U. wirthii) and with norstictic acid
(U. flavocardia s.str.) were found together within lineage 1.

Species delimitation

The similarity matrix (Fig. 2) gives the posterior proba-
bility that two individuals belong to the same Multi-Spe-
cies Coalescent cluster (MSCC) according to the species
tree of Fig. 1. The five lincages highlighted above are
confirmed here. All of the samples of lineage 1 display
high probabilities to belong to lineage 1, except for two
of them (U. flavocardia DN181 and U. flavocardia
DN106) for which the probabilities are lower. Still, they
were not attributed to any other MSCC. In lineage 2, 4
and 5, two or more sub-clusters were evidenced, whereas
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Figure 2. Similarity matrix from STACEY analysis for the Usnea flavocardia aggregate with 47 specimens. The squares represent posterior
probabilities (white =0, dark blue = 1) that two individuals belong to the same Multi-Species Coalescent cluster (MSCC) according to species tree
of Figure 1 also represented on the left. Lineages are numbered from 1 to 5 according to the text. The whole phylogeny is inserted on the lower
left side with the clade names after Truong et al. (2013a) and the USNEA-3 clade highlighted in grey.

lineage 3 corresponds to a MSCC to which all individuals
are strongly attributed.

A putative correlation between lineages and specific
chemotypes

Usnea flavocardia is shown to be highly diverse from the
chemical point of view. The major secondary metabolites
found in this aggregate belong to depsidones (salazinic
and norstictic acids) and f-orcinol depsidones (psoromic
acid). Other secondary compounds such as depsides (bar-
batic acid) and B-orcinol depsides (thamnolic acid,) are
present in some samples. The latter two are new chemo-
types for U. flavocardia, as well as a set of four different
new and unknown fatty acids: FA1 (Rf classes values:
A:5, B:3-4, C:5), FA2 (A:5-6, B:6-7, C:5-6), FA3 (A:6,
B:5, C:5-6) and FA4 (A:1-2, B:2, C:2).

We also found a putative correspondence between the
different lineages and their chemistry pattern (Fig. 1).
According to our sampling, each lineage is characterized
by a specific chemistry except lineage 1 (29 specimens),
which may include at least six different chemotypes,
namely the psoromic acid chemotype (PSO + FAI,;
16 specimens; 55%), the norstictic acid chemotype (NOR
+ FAL; 8 specimens; 27.5%), the thamnolic-norstictic
acid chemotype (THA-NOR; 1 specimen; 3.5%), the stic-
tic acid chemotype (STI; 1 specimen; 3.5%), the psoro-
mic-barbatic acids chemotype (PSO-BAR, 1 specimen;
3.5%) and a fatty acid chemotype (FA1; 2 specimens; 7%).

Lineage 2 (7 specimens) includes specimens with two
different fatty acids (FA3 and FA4) which can be accom-
panied by norstictic acid (NOR). Lineage 3 (3 individuals)
contains one individual with stictic acid and the remaining
two belonging to U. durietzii whose chemotypes were
not available as the sequences were retrieved from Gen-
Bank. Lineage 4 (4 specimens) displays a unique fatty acid
chemotype profile (FA2). The phylogenetically weakly
supported lineage 5 (4 specimens) includes specimens
with salazinic acid (SAL) only.

In our study, norstictic acid is present only in spec-
imens from South America (60% of the 10 specimens
collected in South America) and from North America
(100% of the 3 specimens collected in North America).
The psoromic acid chemotype is predominantly present
in specimens from Europe (78% of the 9 specimens
collected in Europe), Macaronesia (100% of the 4 spec-
imens collected in Macaronesia), Asia (100% of the
2 specimens collected in Asia) and Africa (one specimen
collected), but also occurs in South American specimens
(30% of the 10 specimens collected in South America).
The stictic acid chemotype, new to U. flavocardia, seems
to be rare in this aggregate since it was only found in
two specimens from South America. The fatty acid FA1
was found either alone (2 specimens from Europe) or
occurring together with psoromic acid (3 specimens from
Macaronesia and 1 from South America) or with norstic-
tic acid (1 specimen from South America). Barbatic and
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thamnolic acids were newly found in U. flavocardia,
associated with psoromic acid (1 specimen) in Macar-
onesia, and with norstictic acid in South America (Chile;
1 specimen), respectively.

Discussion

As for the Usnea cornuta group (Gerlach et al. 2019), the
use of molecular sequences has revealed an unexpected
genetic diversity within a group previously thought to
be a single species, namely U. flavocardia. This genetic
diversity was first suggested by Liicking et al. (2020) in
their Usnea phylogeny, using published ITS data from
specimens collected worldwide, showing a main Usnea
flavocardia clade with European and Macaronesian speci-
mens (lineage 1 in this study) sister of a clade containing
a specimen from New Zealand (probably lineage 2 in this
study). With our sampling, U. flavocardia now includes
five different lineages, four of which are highly supported.
Henceforth, we will refer to it as the U. flavocardia aggre-
gate. As with the U. cornuta group, chemotypes correlate
well with the different lineages, at least in our sampling,
and can be suggested as diagnostic characters that should
further be confirmed. Once again, this result confirms that,
specifically in difficult groups such as the genus Usnea,
phylogenetics is a necessary tool to delineate species,
together with morphological, anatomical, chemical and
ecological data.

An unexpected new clade within Usnea

The two species Usnea gaudichaudii and U. eulychniae,
morphologically very different from U. flavocardia, were
sequenced for the first time in this study to determine
their placement within Usnea. The species tree (Fig. S1)
shows that they belong to a new strongly supported clade,
here named USNEA-5, adding to the four clades already
known from the molecular phylogeny of the genus Usnea
(Truong et al. 2013a), albeit with unresolved relationship
to the other clades. Usnea gaudichaudii and U. eulychniae
were originally described from specimens collected in
the Atacama Desert along the coasts of northern Chile
(Motyka 1936—-1938; Follmann 1967). Although U. gau-
dichaudii is mentioned as having been found in Venezuela
and Brazil (Motyka 1936-1938; Consortium of Lichen
Herbaria 2025), these reports were most likely based on
false determinations. Both species are endemic to the
Atacama Desert and live in one of the driest and prob-
ably oldest deserts on Earth (Jung et al. 2019). Usnea
gaudichaudii is a short, shrubby species with numerous
apothecia and branches that are purple red pigmented
in their terminal parts, a unique color in the genus. It
produces diffractaic and barbatic acids in the medulla.
Usnea eulychniae is a subpendulous to pendulous taxon
with capillaceous terminal parts, small punctiform soralia
and thamnolic acid in the medulla. Both species grow
among a rich biological community, mostly on cande-
labriform or arborescent cacti of the genus Eulychnia
living in a narrow coastal desert strip strongly influenced
by frequent maritime orographic fogs, called the Desert
Fog zone (Rundel 1978). This peculiar endemism, linked

to a very specific habitat, most probably resulted from
strong genetic isolation leading to the differentiation of
this highly supported fifth clade in the genus. Another
example of such isolation due to similar extreme con-
ditions in South America is given with the genus Ceno-
zosia, a fruticose genus belonging to the Ramalinaceae,
whose species are endemic to the Atacama Desert Fog
zone and furthermore associated with a Trebouxia pho-
tobiont that was recently demonstrated to also constitute
a newly identified cluster within the Trebouxioid algae
(Jung et al. 2023).

Usnea flavocardia Rasanen vs U. wirthii P. Clerc

One of our objectives in this work was to determine
whether the molecular data confirms the synonymy of
Usnea wirthii (chemotype psoromic acid) under U. flavo-
cardia s.str. (chemotype norstictic acid) (Clerc 2004). The
species tree (Fig. 1) and the similarity matrix (Fig. 2) both
show that no significant difference exists between the two
taxa since they form a highly supported clade (PP=0.97
for the species tree) coined as lineage 1. We were not
able to sequence the type specimens of U. flavocardia
and U. wirthii, but morphological and anatomical studies,
not presented here, as well as chemical evidence strongly
suggest that lineage 1 is conspecific with U. flavocardia
Résédnen s.str. (Clerc 1984, 1997, 2004; Clerc & Otte
2018; Clerc & Kissling 2019). Lineage 1, indeed, con-
tains specimens DN33 and DN35 with psoromic acid col-
lected in South France previously identified as U. wirthii
(U. wirthii could not be found in the vicinity of its type
locality) and specimens DN82, 83 with norstictic acid col-
lected in Corral (Chile), the type locality of U. flavocardia
s.str. Therefore, we consider that lineage 1 corresponds
to U. flavocardia s.str. in the following and confirm the
genetic proximity of U. wirthii with the former species.

The Usnea flavocardia aggregate contains five
lineages that are well characterized by their
chemistry

All of the specimens of the U. flavocardia aggregate used
in this study fall within a single highly supported clade
that also contains the saxicolous taxon U. durietzii which
was not initially thought to belong to this aggregate. The
U. flavocardia aggregate belongs to the USNEA-3 clade
as defined by Truong et al. (2013a). The relationships
between the five different lineages are poorly resolved
as shown in the species tree (Fig. 1). This may be due
to various factors such as the lack of information within
the sequenced markers, incongruent histories among loci,
and/or a recent diversification of this aggregate, leading
to ILS. Whereas, the first cause could be leveraged using
more genes, the two others (Naciri & Linder 2015) might
be intimately related to the diversification process itself
and its rate. In that latter case, it is expected that adding
more genes would not necessarily help resolve the deeper
relationships between the different lineages, as it is often
recorded in radiating lineages (Naciri & Linder 2020).
Usnea flavocardia Rasdnen has often been noted for
its chemical diversity with norstictic, galbinic, psoromic,
salazinic and stictic acids (Clerc 2004; Truong et al. 2011;
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Ohmura 2014). Our results confirm this chemical variabil-
ity and furthermore show that a good correspondence can
be found between the lineages and particular chemotypes.
Such a correlation between chemistry and genetics has
already been described by Gerlach et al. (2019) in the
U. cornuta group.

Lineage 1 (Usnea flavocardia s.str.)

Our sampling was biased toward Chile and Europe since
the aim of this study was to compare U. flavocardia
described in Chile with U. wirthii described in Europe.
Lineage 1 predominates as it contains, by far, most of
the U. flavocardia aggr. specimens analyzed in this study
(29 specimens; 64% of the sequenced specimens; Fig. 1).
The species tree (Fig. 1) and the similarity matrix (Fig. 2)
show that this lineage is quite homogeneous, with all
the specimens displaying high probabilities of falling
within the same cluster, except for two Chilean specimens,
DN106 containing norstictic acid and FA1, and DN181
containing stictic acid (Fig. 2). Lineage 1 contains the
highest chemical and geographic diversities among the
U. flavocardia aggr. with six chemotypes associated with
an almost worldwide distribution (Brazil, Chile, USA,
Canada, Canary Islands, Portugal, France, the Nether-
lands, Switzerland, Taiwan and Tanzania).

Three out of these six chemotypes have previously been
reported from Usnea flavocardia s.str. (Syn. U. wirthii):
1. psoromic acid = FA1 (Clerc 1984), 2. norstictic + FA1
(Clerc 1984, 2004; Clerc & Diederich 1991; Ohmura 2014)
and 3. stictic acid, a chemotype that was first reported
from South America by Truong et al. (2011). Although the
probability of its belonging to lineage 1 is low according
to the STACEY matrix (Fig. 2), the specimen DN106
(norstictic acid, FA1) has no obvious anatomical, mor-
phological or chemical character differentiating it from
other specimens of lineage 1. Specimen DN181 collected
in central Chile (Maule), also with an unusual chemistry
for lineage 1 (stictic acid), likewise shows no morpholog-
ical or anatomical differences from U. flavocardia s.str.
Further studies using additional Chilean specimens would
therefore be necessary to unravel the status of this stictic
acid chemotype and possibly gain more information with
further specimens sharing the same genetics as DN106.

Three further chemotypes are found in lineage 1 that
have not been reported so far in U. flavocardia s.str.: 1.
psoromic and barbatic acids, 2. psoromic and thamnolic
acids and 3. the fatty acid FA1. Barbatic and thamnolic
acids are new substances in U. flavocardia s.str. Barbatic
acid was found together with psoromic acid in a speci-
men collected on the Canary Islands (specimen DN22).
Complementary chemical analyses (P. Clerc, unpublished
results) show that this chemotype is frequent and restricted
to Macaronesia. Thamnolic acid was found only in one
locality situated in the Atacama Desert (Chile) in the fog
oasis “Las Lomitas” within the National Park “Pan de
Azlcar” (specimen DN93). Finally, psoromic acid and
the fatty acid FA1 are found exclusively in lineage 1 and
seem to be diagnostic of this lineage.

Lineage 1 occurs on all continents apart from Oce-
ania (Fig. 1). As previously noted, it contains specimens

collected in Central and South America (10 specimens),
Europe (9), Macaronesia (4), North America (3), Asia
(2) and Africa (1). The number of specimens studied is
not sufficient to draw any definitive conclusions, how-
ever some geographical trends can already be highlighted
within lineage 1 with the norstictic acid chemotype pres-
ent only in South and North America, while the psoromic
acid chemotype is predominantly present in Europe, but
also occurring in South America, Macaronesia, Asia and
Africa. This chemical pattern is not reflected in the genetic
analysis after discarding DN181 and DN106. As a matter
of fact, STACEY analysis showed a fairly homogenous
MSC cluster. This could be due to ILS, a recurrent prob-
lem with species delimitation (Naciri & Linder 2015).
This happens when the speciation is very recent and
when the effective population sizes are important (Naciri
& Linder 2015). Rosenberg (2003) suggested that 5.3 N,
generations are required for a lineage to acquire the mono-
phyly of 99% of its loci. Given the worldwide distribution
of Lineage 1, we might hypothesize that the effective
population size of lineage 1 is high resulting in putative
strong ILS within the lineage and in weakly supported
relationships among specimens (Naciri & Linder 2015).
The lack of geographical or chemical patterns within Lin-
eage 1 could therefore be due to a recent diversification
associated with high effective population sizes mediated
by transoceanic long-distance dispersal (LDD) of vegeta-
tive diaspores (isidiomorphs, soredia, thallus fragments)
via winds or birds as it has been described for other lichen
species (Galloway & Aptroot 1995; Muiioz et al. 2004;
Geml et al. 2010; Lewis et al. 2014). There is indeed evi-
dence in the Parmeliaceae that transoceanic LDD events
occur and that they have played a major role in species
diversification within this family (Amo de Paz et al. 2011;
Fernandez-Mendoza et al. 2011). Alternatively, the used
loci might lack resolution at the scale of this rapid diver-
sification or might not be the most appropriate ones to
highlight such a signal, if it exists, failing at showing
a correlation between chemotypes and genetics.

In summary, Lineage 1 conforms well with U. flavo-
cardia s.str. with both the psoromic and norstictic acid
chemotypes. Moreover, the placement of U. wirthii within
U. flavocardia (Clerc 2004) is here confirmed. Using other
markers such as RAD sequences, for instance (Grewe
et al. 2018), would be necessary to further characterize
this lineage and find putative signs of differentiation.

Lineage 2

Seven specimens (16%) of the U. flavocardia aggr. col-
lected in Australasia and South America are included in
lineage 2. This clade is strongly supported and appears
sister to lineage 1 (Fig. 1). It is characterized by the pres-
ence of fatty acids FA3 and FA4. Neither FA3 or FA4
occur in another lineage of this aggregate. In two speci-
mens (29%), norstictic acid co-occurs with FA3 or FA4.
Lineage 2 has an intercontinental distribution, although
restricted to the southern hemisphere where the two sub-
clades (Figs 1, 2) show a clear geographic separation
between Chile (2 specimens) and Oceania (5). A specimen
collected by H.U. Stauffer in South Africa (G261564) was
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identified as belonging to this lineage, based on anatomi-
cal, morphological and chemical characters as it contains
the fatty acid FA4, but it couldn’t be sequenced since it
is an old specimen. Here again, long-distance dispersal
events between Chile, South Africa and Oceania seem to
be a straightforward hypothesis to explain this disjunction.
According to Mufioz et al. (2004), winds are, for pterido-
phytes, bryophytes and lichens, the major long-distance
dispersal vector in the southern hemisphere.

Our results together with preliminary morphological
and anatomical studies strongly suggest that lincage 2
corresponds to a still undescribed new species, that inhab-
its both South America and Australia, and most probably
South Africa, the two subclades identified so far showing
no obvious morphological differences.

Lineage 3

This well-supported lineage contains two specimens of
Usnea durietzii Motyka from Peru and a specimen of the
Usnea flavocardia aggr. (DN99) from Chile displaying
the stictic acid chemotype (Fig. 1). Its relationship to
the other 4 lineages is not resolved. It was a surprise
to find Usnea durietzii nested within the U. flavocardia
aggr. Usnea durietzii occurs on rocks, mainly in South
America throughout the Andean Cordillera from northern
Venezuela to the Magellan Straits and Tierra del Fuego
(Walter 1985). It usually contains salazinic and norstic-
tic acids, rarely one or the other alone. Walter (1985)
considered this species to belong to the subgenus Neu-
ropogon, probably because the branch extremities were
somewhat blackened. However, Rodriguez et al. (2011)
questioned this placement since they showed unresolved
relationships between U. durietzii and the Neuropogon
clade. Our study seems to confirm that U. durietzii does
not belong to the subgenus Neuropogon, but to the sub-
genus Usnea s.str. Morphologically, the presence of red
cortical dots close to the basal part of its thallus, even
though sometimes inconspicuous, as well as to the yel-
low pigmentation around its central axis (although very
rare: 4 out of 90 specimens present in the fungarium
G), is consistent with the inclusion of U. durietzii in the
U. flavocardia aggr. Specimen DN99 with stictic acid and
sister to U. durietzii is typical of the U. flavocardia aggr.
with numerous red cortical dots over the whole thallus
and a yellow-pigmented medulla around the central axis.
This specimen, however, has a different type of soralia
than the one found in U. flavocardia s.str. We collected
several specimens in Chile with the same morphology
and chemistry, suggesting that the singleton DN99 cor-
responds to a second putative undescribed new species
that falls sister to U. durietzii.

Lineage 4

Four specimens (9%) of the U. flavocardia aggr. are
included in the strongly supported lineage 4 (Fig. 1). This
lineage contains specimens from Brazil (2), Chile (1) and
USA (1), therefore showing a distribution restricted to the
Americas. This lineage, whose relationship to the other
lineages is not resolved, is characterized by the fatty acid
FA2 not found in any other lineage within the aggregate.

The similarity matrix (Fig. 2) shows a weak genetic dif-
ferentiation into two groups (Fig. 2); however, these do
not show geographic patterns. Preliminary morphological
and anatomical studies show that these specimens are
different from those in the other lineages. We collected
several other specimens with the same morphology and
chemistry, strongly suggesting that this fourth lineage
corresponds to another undescribed new species.

Lineage 5

Lineage 5 is not supported in the species tree, although
a high PP (0.97) is found on the mcm7 gene tree. It
comprises a group of specimens whose distribution is
restricted to Central and South America: Chile (2) and
Costa Rica (2). The presence of salazinic acid in this
lineage is unique in this aggregate. The morphological
and anatomical characters displayed by the specimens of
lineage 5 are diverse and need a thorough morphological
and anatomical investigation, as well as more sequence
data to understand its circumscription.

Conclusion

According to our results, the Usnea flavocardia aggregate
includes at least five different lineages, four of which
are phylogenetically well supported, and one is weakly
supported. Miralles & Vences (2013) suggested using at
least five specimens per putative lineage for an efficient
species delimitation analysis, a minimum threshold not
reached by some of these putative species. It was indeed
highly unexpected to find such a high diversity within the
U. flavocardia aggregate; the sampling was only aimed at
checking the synonymy of U. flavocardia and U. wirthii,
while trying to encompass as much geographical diver-
sity as possible. Lineage 1 and 2, each with more than
five specimens, are both highly supported, as is lineage
4 with only four specimens. Only lineage 5 with four
specimens is not supported and, together with the sin-
gleton within lineage 3, would need additional samples
to reach a good species delimitation. Despite this draw-
back, it is still possible to identify several geographic
trends. According to our sampling, lineage 1 is found
worldwide, while lineages 3, 4 and 5 are restricted to
the Americas and lineage 2 is found only in the southern
hemisphere. Although the former statements should be
confirmed with additional data, our results suggest an
important intercontinental distribution in two of our five
lineages that can be explained by long-distance dispersal
by winds and birds.

These results show that the diversity of this group has
been largely underestimated, both at the genetic and chem-
ical levels. We confirm the hypothesis of Clerc (1998)
that chemistry is a good predictor of species delimitation
in Usnea when correlated with other characters, as also
shown by Gerlach et al. (2019) in the U. cornuta group.
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