On Neotropical Fuscoporia with strigose pileus surface: Redescription and phylogenetic study of *Polyporus sarcites* and a new species Fuscoporia dollingeri (Hymenochaetaceae, **Basidiomycota**)

Felipe Bittencourt^{1*}, Diogo Henrique Costa-Rezende², Jiří Kout³, Aristóteles Góes-Neto⁴, Josef Vlasák⁵ & Elisandro Ricardo Drechsler-Santos¹

Article info

Received: 25 Sept. 2023 Revision received: 1 Nov. 2023 Accepted: 5 Nov. 2023 Published: 22 Feb. 2024

Associate Editor

Marcin Piątek

Abstract. Specimens of poroid Hymenochaetaceae with uniquely strigose pileus surfaces were collected and studied morphologically and phylogenetically (using as markers ITS and nrLSU ribosomal DNA). Detailed morphological examination showed that the specimens belong to two distinct species of Fuscoporia. Fuscoporia sarcites comb. nov., which is proposed and recorded for the first time in Guatemala, Honduras, and Venezuela, and the newly described Fuscoporia dollingeri sp. nov., which was collected several times in Florida (USA). Morphological and ecological data of these species are compared to other similar species, and an identification key of Neotropical Fuscoporia is provided.

Key words: Hymenochaetales, molecular phylogeny, Neotropics, Phellinus s.l., tropical forest

Introduction

Hymenochaetaceae Donk is a large group of fungi mostly recognized by brownish basidiomata with xanthochroic reaction, poroid, irpicoid or smooth hymenophore, simple septate generative hyphae and setae variably present. The traditional classification of the family (Ryvarden 1991, 2004) relied on macro and micromorphological characters and comprised few poroid genera, namely Coltricia Gray, Cyclomyces Kunze ex Fr., Phylloporia Murrill,

- ORCID: 0000-0002-7381-6954
- ³ Department of Biology, Geosciences & Environmental Education, Faculty of Education, University of West Bohemia, Klatovská 51, CZ30619 Plzeň, Czech Republic ORCID: 0000-0001-6962-854X
- ⁴ Departamento de Microbiologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil ORCID: 0000-0002-7692-6243
- ⁵ Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ37005 České Budějovice, Czech Republic ORCID: 0000-0002-5363-4459
- * Corresponding author e-mail: 94bittencourt@gmail.com

Inonotus P. Karst and Phellinus Quél, with the latter two containing most species (Ryvarden 2004). With the beginning of phyletic and phylogenetic studies in 20th century (Fiasson & Niemelä 1984), intensified in the 21st century (Niemelä et al. 2001; Wagner & Fischer 2001, 2002), it was demonstrated that the traditional circumscription of Hymenochaetaceae was not natural, and that Inonotus and Phellinus comprised various non-related lineages. Many small genera long considered as synonyms of Phellinus s.l. and Inonotus s.l. were recovered (Fiasson & Niemelä 1984; Wagner & Fischer 2002), while others were proposed as new (Fiasson & Niemelä 1984; Rajchenberg et al. 2015; Zhou et al. 2015; Drechsler-Santos et al. 2016). The taxonomy of Hymenochaetaceae continues to be the subject of taxonomic discussions and proposals (Wagner & Fischer 2001; Zhou et al. 2015; Drechsler-Santos et al. 2016; Pildain et al. 2018; Wu et al. 2022).

In the Neotropics, recent research on Hymenochaetaceae diversity uncovered many new taxa and valuable information for species identification such as hosts, vegetation types, distribution range and new morphological characteristics (e.g., Raymundo et al. 2013; Pires et al. 2015; Drechsler-Santos et al. 2016; Alves-Silva et al. 2020). Molecular studies of known species supported proposals of new genera, such as Nothophellinus Rajchenb. & Pildain (Rajchenberg et al. 2015) and Phellinotus Drechsler-Santos, Robledo & Rajchenb. (Drechsler-Santos et al. 2016). Numerous new combinations have been

¹ Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima s/n, CEP 88040-900, Florianópolis, SC, Brazil

⁽Bittencourt, ORCID: 0000-0003-4285-6213; Drechsler-Santos, ORCID: 0000-0002-3702-8715)

² Departamento de Ciências Biológicas, Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, Novo Horizonte, Feira de Santana, Bahia 44036-900, Brazil

^{© 2024} W. Szafer Institute of Botany, Polish Academy of Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/)

made on neotropical species of *Hymenochaetaceae* in accordance with their modern classification (Baltazar & Gibertoni 2010; Gomes-Silva et al. 2013; Campos-Santana et al. 2015; Alves-Silva et al. 2020; Yuan et al. 2020; Wu et al. 2022). Even so, numerous taxa remain without recent sampling and molecular data, requiring comprehensive morphological and phylogenetic investigations to ensure accurate classification within the modern classification of the *Hymenochaetaceae* family. Also, regions such as the Neotropical Mountain Cloud Forests with high endemism levels for fungi (Olmo-Ruiz et al. 2017) and undescribed taxa (Figueiró et al. 2016; Alves-Silva et al. 2020) are still poorly explored for hymenochaetoid fungi.

During field surveys of lignicolous fungi in the Mountain Cloud Forests and other high-elevation sites of the Neotropics and lowland tropical forests in Florida, several specimens presenting strigose pileus surfaces were collected. These collections presented unique morphological features pointing towards the genus *Fuscoporia* Murrill. One of them presented a combination of characters pointing to *Phellinus sarcites* (Fr.) Ryvarden. The second morphotype was not conspecific with any described species so far. The current work aimed: (i) to re-describe *P. sarcites* and to test its phylogenetics within *Hymenochaetaceae*; and (ii) to describe a new *Hymenochaetaceae* species in detail.

Materials and methods

Study site and morphological analyses

Field expeditions were carried out in the Neotropical Mountain Cloud Forests of São Joaquim National Park in Southern Brazil, La Tigra National Park in Honduras, San Pedro Mount in Guatemala and Myakkahatchee Creek Environmental Park in Florida, USA. Specimens were dried in a fruit dryer at 40°C, packed into hermetic plastic bags to be incorporated in FLOR and PRM herbaria (acronym follows Thiers 2023) and in the private herbarium of J. Vlasák (JV).

Specimens were studied macro and micromorphologically. Measurement of microscopic structures was made based on photos of microscopic slides mounted in Melzer's reagent and phloxine 1% with KOH 3%, using the software ImageJ (Image Processing and Analysis in Java) (Abràmoff et al. 2004). To determine the hyphal system, sections from the trama of the tube layer and context of basidiomata were carefully dissected under a stereomicroscope after incubation in 3-5% NaOH for 48h at 40°C (Decock et al. 2010). In order to display the size of microscopic structures, 5% of the measurements of each extreme are shown between parentheses. In the text, the following abbreviations were used: avg. = average, diam. = diameter, Q = the range of the ratio length/ width, Qm = the mean of the ratio length/width from basidiospores. At least 20 basidiospores and hymenial setae of each fertile specimen were measured.

DNA sequences and molecular phylogenetic analyses

Dried basidiomata were used for DNA extraction using the CTAB method (Góes-Neto et al. 2005). Primer pairs ITS8-F/ITS6-R or ITS5-F/ITS4-R were used to amplify ITS (ITS1-5.8S-ITS2) and LR0R/LR7 to amplify nrLSU (28S) (Binder & Hibbett 2003; Dentinger et al. 2010). PCR products were purified with PEG 20% (Polyethylene glycol 8,000 plus NaCl 2.5M) (Sambrook et al. 1989) or in silica columns Machery-Nagel NucleoSpin PCR Clean-up, and sequenced by commercial facility. Sequences were assembled and manually corrected with Geneious v.4.8.5 (Drummond et al. 2010). All sequences generated in this study were deposited in GenBank® (https://www.ncbi.nlm.nih.gov/genbank/).

For molecular phylogenetic analyses, two datasets were built using sequences of ITS and nrLSU generated in this study and from previous studies available on Gen-Bank® (e.g., Chen et al. 2019, 2020; Vlasák et al. 2020; Yuan et al. 2020) (Table 1). The first one, containing a great sampling of major clades of Hymenochaetaceae, aimed to investigate the phylogenetic relationships of collected species within Hymenochaetaceae genera using Rigidoporus corticola (Fr.) Pouzar as outgroup based on data from Larsson et al. (2006), Drechsler-Santos et al. (2016) and Wang et al. (2023). The second one was focused on Fuscoporia based on the results of the first one, aiming to investigate the relationships of the samples within the genus using closely related genera as outgroups, Coniferiporia L.W. Zhou & Y.C. Dai and Phellinidium (Kotl.) Fiasson & Niemelä, based on data from Zhou et al. (2016). Sequences were automatically aligned with MAFFT v.7 (Katoh & Standley 2013) under the auto strategy. The alignment was manually adjusted, when necessary, in the software MEGA 7 (Kumar et al. 2016).

For the phylogenetic analyses both datasets were subdivided into four partitions each: ITS1 + 5.8S + ITS2 + nrLSU. All analyses were performed online using the CIPRES Science Gateway (Miller et al. 2011). Maximum likelihood (ML) analysis was carried out in RAxML v.8 (Stamatakis 2014). The analysis initially involved 100 ML searches, each one starting from one randomized stepwise addition parsimony tree, under a GTRGAMMAI model, with all the parameters estimated by the software. We provided a partition file to force RAxML software to search for a separate evolution model for each dataset. To access the reliability of the nodes, rapid bootstrapping replicates under the same model are computed, allowing the program to halt bootstrapping automatically by the autoMRE option. Bootstrap (BS) values above 75% were considered significant.

Bayesian analysis (BI) was performed in the program Mr. Bayes v.3.2.6 (Ronquist et al. 2012), and evolutionary models for BI were estimated using the AIC (Akaike Information Criterion) for each partition, as implemented in jModelTest2 v.1.6 (Guindon & Gascuel 2003; Darriba et al. 2012). The best-fit models for each partition were implemented as partition specific models for each partition of the combined dataset. We set two independent runs,

 Table 1. List of vouchers or strains with its respective country of origin and access number on GenBank® of ITS and nrLSU sequences used in the molecular phylogenetic analyses.

	1	1			
Species	Voucher	Country	GenBank accession numbers		Courses
	voucher		ITS	LSU	Source
Arambarria cognata	CIEFAPcc16	Argentina	KY907680	KY907700	Pildain et al. (2017)
Coltricia perennis	DSH 93.198	unknown	DQ234560	AF287854	Bian et al. (2016);
					Binder & Hibbet (2002)
Coniferiporia qilianensis	Yuan 6424	China	KR350561	KJ635808	Zhou et al. (2016)
Coniferiporia sulphuracens	Cui 10429	China	KR350565	KR350555	Zhou et al. (2016)
Coniferiporia weirii	CFS 504	Canada	AY829341	AY829345	Lim et al. (2005)
Cylindrosporus flavidus	Dai 13213	China	KP875564	KP875561	Zhou (2015a)
Fomitiporella inermis	JV 1009/56	USA	KX181306	KX181347	Ji et al. (2017)
Fomitiporella umbrinella	JV 0904/149-J	USA	KX181293	KX181329	Ji et al. (2017)
Fomitiporia langloisii	MUCL 46375	USA	EF429242	EF429225	Decock et al. (2007)
Fomitiporia robusta	MUCL 51297	Mexico	JQ087892	JQ087919	Amalfi et al. (2012)
Fulvifomes squamosus	CS 385	Peru	MF479268	MF479265	Salvador-Montoya et al. (2018)
Fulvifomes robinae	CBS 211.36	USA	AY558646	AY059038	Jeong et al. (2005); Wagner & Fischer (2002)
Fulvoderma australe	Cui 10343	China	MF860767	MF860719	Zhou et al. (2018)
Fuscoporia acutimarginata	Dai 15137	China	MH050751	MH050765	Chen & Dai (2019)
Fuscoporia acutimarginata	Dai 16892	China	MH050752	MH050766	Chen & Dai (2019)
Fuscoporia ambigua	Cui 9244	China	MN816706	MN809995	Chen & Dai (2019)
Fuscoporia ambigua	JV 0509/151	USA	MN816707	MN809996	Chen & Dai (2019)
Fuscoporia americana	JV 1209/100	USA	KJ940022	MG008467	Chen et al. (2020)
Fuscoporia atlantica	SP 465829	Brazil	KP058514	KP058516	Pires et al. (2015)
Fuscoporia atlantica	SP 445618	Brazil	KP058515	KP058517	Pires et al. (2015)
Fuscoporia atlantica	JV 1612/28-D	Guadeloupe	MZ169038	_	This work
Fuscoporia australasica	Dai 15625	China	MN816726	MN810018	Chen & Dai (2019)
Fuscoporia australasica	Dai 15636	China	MG008397	MG008450	Chen et al. (2019)
Fuscoporia bambusae	Dai 16599	Thailand	MN816711	MN809999	Chen & Dai (2019)
Fuscoporia bambusae	Dai 16607	Thailand	MN816713	MN810000	Chen & Dai (2019)
Fuscoporia caymanensis	JV 1908/74	French Guiana	MT676832	MT676833	Vlasak et al. (2020)
Fuscoporia caymanensis	JV 1408/5	Costa Rica	MW009110	MW009109	Vlasak et al. (2020)
Fuscoporia centroamericana	O 908267	Costa Rica	MG008443	_	Chen et al. (2019)
Fuscoporia centroamericana	JV 1607/93	Costa Rica	MG008444	MG008460	Chen et al. (2019)
Fuscoporia chrysea	JV 1607/106-J	Costa Rica	MN816736	MN810027	Chen & Dai (2019)
Fuscoporia contigua	JV 1204/22.3a,b-J	USA	KX961104	KY189104	Chen & Yuan (2017)
Fuscoporia contigua	Dai 13567A	China	MG008402	MG008455	Chen et al. (2019)
Fuscoporia contigua	Dai 16045	China	KX961105	KY189105	Chen & Yuan (2017)
Fuscoporia costaricana	JV 1504/85	Costa Rica	MG008413	MG478454	Chen et al. (2019)
Fuscoporia costaricana	JV 1407/92	Costa Rica	MG008446	MG008461	Chen et al. (2019)
<i>Fuscoporia dollingeri</i> sp. nov.	Dollinger 623	USA	MW908540	MW898444	This work
Fuscoporia dollingeri sp. nov.	Dollinger 652	USA	MW908541	MW898445	This work
Fuscoporia eucalypti	Dai 18634A	Australia	MN816729	MN810020	Chen & Dai (2019)
Fuscoporia eucalypti	Dai 18792	Australia	MN816731	MN810022	Chen & Dai (2019)
Fuscoporia ferrea	FP-133592-Sp	USA	KU139189	KU139259	Brazee (2015)
Fuscoporia ferrea	JV 1606/2.2-J	USA	KX961100	KY189100	Chen & Yuan (2017)
Fuscoporia ferrea	Cui 11801	China	KX961101	KY189101	Chen & Yuan (2017)
Fuscoporia ferrea	MUCL 45984	France	KX961112	KY189112	Chen & Yuan (2017)
Fuscoporia ferruginosa	Dai 13200	France	MN816702	MN809993	Chen & Dai (2019)
Fuscoporia ferruginosa	JV 1507/11-CN	Slovakia	MG008400	MG008453	Chen et al. (2019)
Fuscoporia formosana	URM 91197	Brazil	MH392551	MH407350	Yuan et al. (2020)
Fuscoporia formosana	URM 91243	Brazil	MH392552	MH407351	Yuan et al. (2020)
Fuscoporia gilva	RP 17	Brazil	KP859295	KP859305	Drechsler-Santos et al. (2016)
Fuscoporia gilva	FLOR 67295	Brazil	MN809970	MN809979	This work
Fuscoporia gilva	JV 1006/16	USA	MZ169042	_	This work
Fuscoporia gilva	URM 83957	Brazil	MH392545	MH407344	Yuan et al. (2020)
Fuscoporia gilva	URM 91228	Brazil	MH392546	MH407345	Yuan et al. (2020)
Fuscoporia insolita	Spirin 5208	Russia	MN816724	MN810016	Chen & Dai (2019)
Fuscoporia insolita	Spirin 5251	Russia	KJ677113	_	Spirin et al. (2014)
Fuscoporia latispora	JV 0610/VII-Kout	Mexico	MG008436	MG008469	Chen et al. (2019)
Fuscoporia latispora	JV 1109/482	USA	MG008439	MG008468	Chen et al. (2019)
Fuscoporia licnoides	Dai 17388	Brazil	MN121824	MN121765	Chen & Dai (2019)

Table 1. Continued.

Species	Voucher	Country	GenBank accession numbers		
			ITS	LSU	Source
Fuscoporia licnoides	Dollinger 868	unknown	MN816701	MN809992	Chen & Dai (2019)
Fuscoporia licnoides	URM 91236	Brazil	MH392554	MH407353	Yuan et al. (2020)
Fuscoporia licnoides	URM 85067	Brazil	MH392557	MH407356	Yuan et al. (2020)
Fuscoporia marquesiana	URM 83094	Brazil	MH392544	MH407343	Yuan et al. (2020)
Fuscoporia monticola	Dai 11860	China	MG008406	MG008457	Chen et al. (2019)
Fuscoporia monticola	Dai 10909	China	MG008410	_	Chen et al. (2019)
Fuscoporia palomari	JV 1004/5-J	USA	MN816737	_	Chen & Dai (2019)
Fuscoporia palomari	JV 1305/3-J	USA	MN816738	MN810028	Chen & Dai (2019)
Fuscoporia punctatiformis	Dollinger 872	unknown	MH050753	_	Chen & Dai (2019)
Fuscoporia punctatiformis	Dai 17443	Brazil	MH050755	MH050764	Chen & Dai (2019)
Fuscoporia ramulicola	Dai 15723	China	MH050749	MH050762	Chen & Dai (2019)
Fuscoporia ramulicola	Dai 16155	China	MH050750	MH050763	Chen & Dai (2019)
Fuscoporia rufitincta	JV 1008/25	USA	KJ940029	KX058575	Chen et al. (2019)
Fuscoporia rufitincta	JV 0904/142	USA	KJ940030	KX058574	Chen et al. (2019)
Fuscoporia sarcites	FLOR 67299	Brazil	MN809972	_	This work
Fuscoporia sarcites	FLOR 67948	Brazil	MN809973	MN809981	This work
Fuscoporia sarcites	FLOR 67297	Brazil	MN809974	MN809982	This work
Fuscoporta sarcites	FLOR 67298	Brazil	MN809975		This work
Fuscoporta sarcites	Dammrich 8947	Honduras	M7169041	_	This work
Fuscoporia sarcitas	$V_0402/20_{\rm K}$ out	Venezuela	MZ169039	_	This work
Fuscoporia sarcitas	IV 0611/K2-Kout	Guatemala	MZ169040	_	This work
Fuscoporia samiarida	URM 83800	Brazil	MH392562	MH407361	Yuan et al. (2020)
Fuscoporia semiarida	URM 83000	Drazil	MH202565	MH407364	$\frac{1}{2}$
	VUC20110022 13	South Voras	IV462658	IX462652	$\frac{1}{2} \log \alpha \operatorname{et} \alpha \operatorname{al} (2012)$
Fuscoporta sentes	KUC20110922-13		JA403038	JA403052	$\begin{array}{c} \text{Jang et al. (2012)} \\ \text{Char at al. (2010)} \end{array}$
Fuscoporia septoseta	JV 0309/78	USA	MC008404	- MNI910022	Chern et al. (2019)
Fuscoporia sepioseia	Dai 12820	China	MU050758	MIN610055	Chen & $Dai (2019)$
Fuscoporia selijera	Dal 15/10	China	MH050750	MH050767	Chen & Dai (2019)
Fuscoporia senjera	Dai 15700	China	MH050759	MH050769	Chem & Dai (2019)
Fuscoporia snoreae	Dai 17800	Singapore	MIN810/33	MIN810024	Chem & Dai (2019)
Fuscoporia snoreae	Dai 1/818	Singapore	MIN810733	MIN810020	Chem at $a1 (2019)$
Fuscoporia sinica	Dai 15489	China	MG008407	MG008458	Chem et al. (2019)
Fuscoporia sinica	Dai 15468	China	MG008412	MG008459	Chem 8, D_{2} ; (2019)
Fuscoporia subchrysea	Dai 16201	China	MIN810708	MIN809997	Chem & Dai (2019)
Fuscoporia subchrysea	Dai 1/050	China	MIN810709	MIN809998	Chen & Dat (2019)
Fuscoporia subjerrea	Dai 16320	China	KX961097	KY053472	Chen & Yuan (2017)
Fuscoporia subjerrea	Dai 1632/	China	KX961098	KY0534/3	Chen & Yuan (2017)
Fuscoporia torulosa	Dai 15518	China	MIN816/32	MIN810023	Chen & Dai (2019)
Fuscoporia torulosa	1solate /59	Czech Republic	AM269803	AM269865	Guglielmo et al. (2007)
Fuscoporia torulosa	JV 1312/19-Kout	Spain	KX961107	KY189107	Chen & Yuan (2017)
	He 2081	USA	MN121829	MN121//0	Chen & Dai (2019)
	He 2123	USA	MIN816/25	MIN810017	Chen & Dai (2019)
	JV 0911/6	Czech Republic	KX961110	-	Chen & Yuan (2017)
Fuscoporia wanibergii	JV 1312/20-Kout	Spain	MIN816727	MG008462	Chen & Dai (2019)
Fuscoporia wanibergii	JV 0/09/169-J	USA	MIN816/28	_	Chen & Dai (2019)
Fuscoporia wahlbergii	FLOR 6/94/	Brazil	MN809976	_	This work
Fuscoporia wahlbergii	FLOR 6/950	Australia	MN809977	-	This work
Fuscoporia wahlbergii	FLOR 52882	Brazil	MN809978	MN809983	This work
Fuscoporia yunnanensis	Cui 8182	China	MH050756	MN810029	Chen & Dai (2019)
Fuscoporia yunnanensis	Dai 15637	China	MH050757	MH050768	Chen & Dai (2019)
Inocutis dryophila	L(61)5-20-A	USA	AM269783	AM269845	Guglielmo et al. (2007)
Inonotus compositus	Wang 552	China	KP030781	KP030768	Zhou et al. (2015)
Inonotus hispidus	S45	Spain	EU282482	EU282484	González et al. (2009)
Mensularia radiata	85-107	Germany	AY624992	_	Fischer et al. (2005)
Mensularia radiata	HAI 1247	Germany	GQ253460	_	Tura et al. (2012)
Neomensularia duplicata	Dai 13578A	China	KU573970	KU573972	Wu et al. (2016)
Neomensularia kanehirae	Dai 10418	China	KX078220	KX078223	Wu et al. (2016)
Neophellinus uncisetus	MUCL 47061	Argentina	GU461972	GU462000	Amalfi et al. (2010)
Nothophellinus and inopatgonicus	CIEFAPcc42	Argentina	KP347534	KP347529	Rajchenberg et al. (2015)
Nothophellinus and inopatgonicus	CIEFAPcc367	Argentina	KP347544	KP347531	Rajchenberg et al. (2015)

Species	Voucher	Country	GenBank accession numbers		C
			ITS	LSU	Source
Onnia tomentosa	Bud-551-C-1	Canada	JX110072	JX110116	Brazee & Lindner (2013)
Phellinidium asiaticum	Spirin 5097	Russia	KR350572	KC859424	Zhou et al. (2014, 2016)
Phellinidium ferrugineofuscum	Cui 10042	China	KR350573	KR350559	Zhou et al. (2016)
Phellinidium fragrans	CBS 202.90	USA	AY558619	AY059027	Jeong et al. (2005); Wagner & Fischer (2002)
Phellinopsis andina	CIEFAPcc297	Argentina	KP347542	KP347528	Rajchenberg et al. (2015)
Phellinopsis asetosa	Dai 13553	China	KJ425524	KJ425523	Zhou (2015b)
Phellinotus neoaridus	URM 80362	Brazil	KM211294	KM211286	Drechsler-Santos et al. (2016)
Phellinotus piptadeniae	URM 80345	Brazil	KM211291	KM211283	Drechsler-Santos et al. (2016)
Phellinus caribaeo-quercicola	MUCL 46003	Cuba	HM635697	DQ127279	Yombiyeni et al. (2011); Decock et al. (2006)
Phellinus ellipsoideus	MUCL 47867	China	KU954545	KU954540	Campos-Santana et al. (2016)
Phylloporia elegans	FLOR 51179	Brazil	KJ639050	KJ631409	Ferreira-Lopes et al. (2016)
Phylloporia gabonensis	MUCL 55572	Gabon	KU198354	KU198352	Decock et al. (2015)
Porodaedalea cancriformans	1-Sp	USA	JX110042	JX110086	Brazee & Lindner (2013)
Porodaedalea pini	No-6170-T	Portugal	JX110037	JX110081	Brazee & Lindner (2013)
Pseudoinonotus dryadeus	FP-105836-4	USA	AM269808	AM269870	Guglielmo et al. (2007)
Rigidoporus corticola	ZRL20151459	unknown	LT716075	KY418899	Zhao et al. (2017)
Sanghuangporus sanghuang	Cui 14420	China	MF772790	MF772811	Zhu et al. (2019)
Sanghuangporus weirianus	CBS 618.89	USA	AY558654	AF458465	Park et al. (2002)
Tropicoporus drechsleri	CTES:570140	Argentina	MG242439	MG242444	Salvador-Montoya et al. (2018)
Tropicoporus tropicalis	IDR1300012986	USA	KF695121	KF695122	Ramesh et al. (2014)

Table 1. Continued.

each one starting from random trees, with four simultaneous independent chains and performed 10,000,000 generations, sampling trees at every 100th generation. The convergence diagnostic was calculated every 10⁴ generations, and its critical value was set to stop the analysis automatically when the standard deviation of the split frequencies reached the value defined by the stopval command (stoprule = yes, stopval = 0.01). A total of 25% of the sampled trees was discarded as burn-in, while the remaining were used to reconstruct a 50% majority-rule consensus tree and to estimate Bayesian posterior probabilities (PP) of the branches. PP values above 0.95 were considered as significant. The topologies of BI and ML analyses were visually verified for congruence in the significantly supported clades.

Results

Molecular phylogeny

The topologies of ML and BI analyses were congruent regarding the well-supported clades. The displayed topologies were recovered in ML analyses, with BI and ML support values appearing above or below branches (Figs 1 and 2).

The *Hymenochaetaceae* ITS + nrLSU dataset included 55 specimens from various genera of *Hymenochaetaceae*. The DNA sequence alignment resulted in 2,243 characters, of which 1,144 were variable positions and 827 were parsimony-informative positions. The following substitution model were obtained for each partition: GTR+G (ITS 1), TVMef+I (5.8 S), TPM2uf+I+G (ITS 2), TrN+I+G (nrLSU).

The *Fuscoporia* ITS + nrLSU dataset included 88 specimens. The DNA sequence alignment resulted in 2,241 characters, of which 790 were variable positions and 630 were parsimony-informative positions. The following substitution model was obtained for each partition: TPM2uf+I+G (ITS 1), TPM1 (5.8 S), TVM+I+G (ITS 2), GTR+I+G (nrLSU).

In the *Hymenochaetaceae* ITS + nrLSU dataset, 23 well-supported main clades were recovered, each one corresponding to a genus, except by a miscellaneous clade including *Arambarria* Rajchenb. & Pildain, *Fomitiporella* Murrill and *Inocutis* Fiasson & Niemelä. The specimens tested here, *F. dollingeri* sp. nov. and *F. sarcites* comb. nov. clustered with the remaining *Fuscoporia* species (BS = 97/PP = 1), including the type species *F. ferruginosa* (Schrad.) Murrill.

A total of 39 species of *Fuscoporia* were recovered in the *Fuscoporia* ITS + nrLSU dataset phylogenetic analyses. Among them, *F. sarcites* comb. nov. is recovered as a single lineage (BS = 92/PP = 0.99), as well as *F. dollingeri* sp. nov. (BS = 100/PP = 1). Those two species grouped with *F. formosana* (T.T. Chang & W.N. Chou) T. Wagner & M. Fisch., *F. gilva* (Schwein.) T. Wagner & M. Fisch., *F. gilva* (Schwein.) T. Wagner & M. Fisch., *F. atlantica* Motato-Vásq., R.M. Pires & Gugliotta and *F. setifera* (T. Hatt.) Y.C. Dai in a fully supported lineage labeled as "*Fuscoporia gilva* group" (BS = 100/PP = 1).

Considering the phylogenetic analyses and morphological evidence, *P. sarcites* is combined in *Fuscoporia* and a new species of *Fuscoporia* is proposed, both described in the taxonomy section.

Figure 1. Phylogenetic reconstruction of *Hymenochaetaceae* main lineages inferred after ITS and nrLSU sequences. The presented topology is from the Maximum Likelihood analysis. Only support values equal or higher than 75% for bootstrap and 0.95 for posterior probability are presented, in this order, above or below branches. The sequences generated in this study are in bold. *Rigidoporus corticola* was selected as outgroup. Country codes are according to ISO 3166-1.

Taxonomy

Fuscoporia sarcites (Fr.) Bittencourt, J. Vlasák, Drechsler-Santos, comb. nov. (Figs 3-4)

MycoBank MB 839623

Basionym: *Polyporus sarcites* Fr., Nova Acta R. Soc. Scient. upsal., Ser. 3 1(1): 66. 1851.

Type: U.S. Virgin Islands, Saint John: ad truncos, A.S. Ørsted (NY 00730951 – holotype [image!]).

≡ Fomes sarcites Fr. Cooke, Grevillea 14no. 69: 19. 1885. ≡ Scindalma sarcites Fr. Kuntze, Revis. gen. pl. Leipzig 33: 519. 1898. ≡ Pyropolyporus sarcites Fr. Murrill, N. Amer. Fl. New York 92: 110. 1908. ≡ Fulvifomes sarcites Fr. Murrill, Tropical Polypores: 85. 1915. ≡ Phellinus sarcites Fr. Ryvarden [as 'sarcitus'], Norw. Jl Bot. 19: 235. 1972.

= *Coriolopsis sarcitiformis* Murrill, Bull. New York Bot. Gard. 8: 140. 1912.

Type: Mexico, Teperte Valley, near Cuernavaca, 28 Dec. 1909, W.A. & E.L. Murrill 555 (BAFC – isotype!).

= *Polystictus sarcitiformis* (Murrill) Murrill, Bull. New York Bot. Gard. 8: 153. 1912.

Description. Basidiomata seasonal, effused-reflexed to pileate, gregarious, occasionally imbricate. Pileus semicircular to dimidiate, flexible, 13-44 mm long, 12-60 mm wide, up to 9.5 mm thick; pileus surface hispid in developing basidiomata to strongly adpressed when mature, yellowish brown to ferruginous brown; context homogeneous, compact, fibrous, golden yellow in young basidiomata to yellowish brown at maturity, 1-5 mm thick; tubes one-layered, fragile and brittle, concolorous to the context, 1-6 mm thick; margin sterile, acute, concolorous to the remaining pileus surface in mature basidiomata, round and bright yellow in young basidiomata, up to 1 mm wide. Hymenophore poroid, yellow in young basidiomata, becoming greyish brown in mature basidiomata; pores round to angular, 4-8(-9) pores per mm, (56-)79-346(-459) µm in diam.; dissepiment thin, entire, (12-)20-97(-180) µm thick, sometimes irregular in height giving an appearance of an irpicoid hymenophore (Fig. 3D). Hyphal system dimitic in the trama of tubes, monomitic in context; generative hyphae simple septate; in trama thin to thick-walled, wide lumen, regularly branched, hyaline

Figure 2. Phylogenetic reconstruction of *Fuscoporia* inferred after ITS and nrLSU sequences. The presented topology is from the Maximum Likelihood analysis. Only support values equal or higher than 75% for bootstrap and 0.95 for posterior probability are presented, in this order, above or below branches. The sequences generated in this study are in bold. *Coniferiporia weirii* was selected as outgroup. Country codes are according to ISO 3166-1.

to golden yellow, (1.2-)1.7-3.3(-4.1) µm diam., lumen (0.8-)1.1-2.2(-2.9) µm wide, thin-walled generative hyphae variably encrusted projecting above the hymenium; in context thin to thick-walled, with a wide lumen, regularly to sparsely branched, frequently septate, sometimes with unbranched long segments resembling skeletal

hyphae, hyaline to golden yellow, sometimes with a golden, refractive and granulose content (Fig. 4A), $(1.8-)2.7-6.6(-8.9) \mu m$ diam., lumen $(0.9-)1.6-5.1(-8) \mu m$ wide; skeletal hyphae in trama yellowish brown, unbranched or rarely branched with short or aborted branches, parallel arranged, $(144-)287.5-1191(-1432.5) \mu m$ long,

Figure 3. *Fuscoporia sarcites* comb. nov. A and B. Basidiomata in situ. A – habitat (FLOR 67304); B – developing basidiomata (FLOR 67303); C – hispid pileus surface (FLOR 67300); D – hymenophore (FLOR 67300); E – detail of hyphal strands in pileus surface (FLOR 67300); F – detail of hymenophore with dissepiment irregular in height (FLOR 67300). Scales: A = 30 mm; B–D = 10 mm; E–F = 2 mm. Photos: F. Bittencourt (A–B, E–F) and W.R. Nardes (C–D).

(1.9–)2.5–4.8(–5.8) µm diam., lumen 0.6–1.6(–1.9) µm wide. Hymenial setae subulate with straight apex, aseptate, frequently mono and bi-rooted, rarely three-rooted, (15.1–)18.5–32.6(–37) × (4–)4.5–8(–9) µm; basidia clavate to barrel-shaped, (6–)7–14(–15) × (3–)3.5–5 µm; cystidioles lageniform, ventricose-rostrate or ampulliform, frequently with a filiform apex up to 33 µm long, 7–27.4(–70) × (1.5–)2.9–5 µm. Basidiospores broadly ellipsoid to ellipsoid, (2.6–)3.2–4.6(–5.4) × (1.9–)2.3–3(–3.3) µm, Q = 1.2–1.9, avg. = 3.9 × 2.6 µm, Qm = 1.5, thin-walled, hyaline, IKI–.

Habitat and distribution. On dead trunks and branches of undetermined angiosperms, as well as on living *Quercus microphylla* Née (Raymundo et al. 2012) and *Myrceugenia* spp. Found on Cloud Forests, *Quercus* dominated forests (Valenzuela et al. 2002; Mueller et al. 2006) and other montane ecosystems across the Neotropics (Carranza et al. 2018). Recorded from Brazil (Drechsler-Santos et al. 2008, this work), Colombia (Ryvarden 2004; Ruíz & Varela 2006; Vasco-Palacios & Franco-Molano 2013), Costa Rica (Lowe 1957; Ryvarden 2004; Mueller et al. 2006), Guatemala (this study), Honduras (this study),

Figure 4. Fuscoporia sarcites comb. nov., illustration of microscopic features. A – context, composed by generative hyphae, some with a refracting content; B – trama of the tubes with dominating skeletal hyphae; C – hymenial setae; D – cystidioles; E – basidia; F – basidiospores. Scales: $A-C = 20 \mu m$; $D-F = 10 \mu m$. Illustrations: F. Bittencourt.

Mexico (Murrill 1915; Lowe 1957; Bandala-Muñoz et al. 1993; Herrera-Fonseca et al. 2002; Valenzuela et al. 2002) and Venezuela (this study).

Specimens examined. BRAZIL. Santa Catarina: Urubici, São Joaquim National Park, Santa Bárbara, Module 1 RAPELD, Plot PPBio TN3500, 28°09'18.1"S, 49°38'24.1"W, 1500 m, on fallen branch, 15 Mar. 2018, E.R. Drechsler-Santos 2189 (FLOR

67297); ibid., on dead standing trunk, 27 Nov. 2018, F. Bittencourt 1193 (FLOR 67302); ibid., on dead standing trunk, 21 Jun 2014, G. Alves-Silva 604 (FLOR 67298); ibid., 27 Nov. 2017, E.R. Drechsler-Santos 2149 (FLOR 67299); ibid., Santa Bárbara, Module 1 RAPELD, Plot PPBio TN3500, Cloud Forest, on fallen wood, L.A. Funez 7749 (FLOR 67300); ibid., Santa Bárbara, Module 1 RAPELD, Plot PPBio TN3500, Cloud Forest, on fallen wood, 29 Aug. 2018, L.A. Funez 7750 (FLOR 67301); ibid., nearby to Plot PPBio TS3500, Cloud Forest, 28°09'43"S, 49°38'14"W, on dead trunk, 28 Nov. 2018, F. Bittencourt 1217 (FLOR 67303); ibid., Santa Bárbara, Module 1 RAPELD, Plot PPBio TN3500, Cloud Forest, on Myrceugenia sp., 28 Nov. 2018, D.K. Souza-Guimarães 120 (FLOR 67304); ibid., Plot PPBio TS3500, Cloud Forest, 28°09'43"S, 49°38'14"W, on dead branch of a living tree (Myrceugenia regnelliana), 15 Mar. 2018, Drechsler-Santos, E.R. 2182 (FLOR 67948). GUATEMALA. San Pedro Mt., 2500 m, Nov. 2006, J. Kout 0611/K2 (JV). HON-DURAS, Tegucigalpa, La Tigra National Park, 1800 m, Feb. 2005, H.J. Hardtke (Dammrich 8947, JV). MEXICO. Teperte Valley, near Cuernavaca, 28 Dec. 1909, W.A. & E.L. Murrill 555 (BAFC, isotype of Coriolopsis sarcitiformis). USA. U.S. Virgin Islands: St. John, ad truncos, A.S. Ørsted s.n. (NY 00730951, holotype of Polyporus sarcites [image]). VENEZUELA. Merida, Feb. 2004, J. Kout 0402/20 (JV).

Additional specimens examined. *Fuscoporia gilva*: BRA-ZIL. Santa Catarina: Urubici, São Joaquim National Park, Santa Bárbara, Module 1 RAPELD, Plot TN1500, on dead branch of a living *Baccharis* sp., 12 Oct. 2016, E.R. Drechsler-Santos 1833A (FLOR 67295); ibid., Plot TN3500, 28°09'18.1"S, 49°38'24.1"W, 1500 m, 14 Mar. 2018, E.R. Drechsler-Santos 2178 (FLOR 67296).

Notes. Fuscoporia sarcites can be identified in the field by the yellowish color of young basidiomata and the hispid to adpressed pileus surface, distinct from most Neotropical Fuscoporia species. Other important macroscopic features are the pileate, flexible pileus, fragile and brittle tube layer with 4-8(-9) pores/mm and lacerate dissepiment in older basidiomata, with the hymenophore becoming irpicoid. Micromorphologically, *F. sarcites* is distinguished from other Fuscoporia species by having a monomitic hyphal system in the context and dimitic in the trama.

The macro and micromorphological characters of *F. sarcites* resemble *F. callimorpha* (Lév.) Groposo, Log.-Leite & Góes-Neto, *F. flavomarginata* (Murrill) Groposo, Log.-Leite & Góes-Neto, *F. gilva, F. licnoides* (Mont.) Oliveira-Filho & Gibertoni, *F. marquesiana* Gibertoni & C.R.S. de Lira, *F. rhabarbarina* (Berk.) Groposo, Log.-Leite & Góes-Neto and *F. semiarida* Lima-Júnior, C.R.S. de Lira & Gibertoni. These species share the pileate basidiomata, hymenial setae with straight apex, trama with dimitic hyphal system and ellipsoid basidiospores with similar size (Loguercio-Leite & Wright 1995; Groposo et al. 2007; Yuan et al. 2020). However, all of them have glabrous to velutinate or scrupose pileus surface and are described as having a dimitic hyphal system throughout all basidiomata.

Fuscoporia formosana is the only fully monomitic species in the genus, being known from Asia (Chang & Chou 1998; Tsujiyama 2011) and Brazil (Yuan et al. 2020). It was originally described as *Inonotus formosanus* T.T. Chang & W.N. Chou, being characterized by having pileate basidiomata with yellowish pore surface in young basidiomata, tomentose to hispid pileus surface, hymenial setae with straight apex and hyaline, ellipsoid and thin-walled basidiospores (Tsujiyama 2011). It differs from *F. sarcites* by having a darkening pore surface when bruised or touched, larger pores [3–5 vs. 4–8(–9) per mm], entire dissepiment, monomitic hyphal system in the trama and smaller basidiospores $[3.5-4 \times 1.8-2.5 \text{ vs.} (2.6-)3.2-4.6(-5.4) \times (1.9-)2.3-3(-3.3) \mu\text{m}]$ (Chang & Chou 1998; Tsujiyama 2011).

Fuscoporia semihispida (Ryvarden) Y.C. Dai & F. Wu known from the Dominican Republic is similar to *F. sarcites*, but is mainly differentiated by its dimitic hyphal system and hooked hymenial setae (Ryvarden 2004). Currently, there are no molecular data of this species.

The name *F. sarcites* was previously mentioned by Wu et al. (2022). However, this reference lacks the requisite information, i.e., basionym citation, for a valid proposal of a new combination, as stipulated by Article 41 of the International Code of Nomenclature for algae, fungi, and plants (Turland et al. 2018).

Fuscoporia dollingeri J. Vlasák, sp. nov. (Figs 5–6)

MycoBank MB 839691

Diagnosis: The species is characterized by its small and dark brown basidiomata with a densely strigose pileus cover found on the underside of thin branches. Microscopically, it has hymenial setae up to 65 μ m long and cylindrical basidiospores measuring (7–)7.5–9(–11) × 3–4 μ m.

Type: USA, Florida: North Port, Myakkahatchee Creek Enviro. Park, on a pile of mixed hardwood debris, 30 Dec. 2015, Dollinger 623 (PRM – holotype!).

Description. Basidiomata annual, resupinate or semi-resupinate to pileate, nodulose, usually with several small, round pilei on the underside of substrata, occasionally fused laterally. Pileus semicircular, coriaceous to rigid, 7-30 mm long, 5-20 mm wide, up to 7 mm thick; pileus surface dark tobacco brown, densely covered with stiff, erect hairs or hydnoid processes, 2-4 mm long, often forked at tips, context homogeneous, lacunose towards pileus surface, comprised of loosely arranged hymenial fascicles from which tubes or surface hairs arise, dark brown, 1-2 mm thick; tubes one-layered, fragile, dark brown, but with silvery hymenial layer inside the tube, 2–4 mm long, margin indistinct, membranaceous, appressed. Hymenophore poroid, brown to greyish brown; pores angular to hexagonal, in places elongated to slightly labyrinthine, 2–3 per mm; disseptiments thin, entire, or sometimes with hydnoid processes developed on tube dissepiments. Hyphal system dimitic; generative hyphae simple septate; in the trama thin to slightly thick-walled, branched, hyaline to light yellow, 1.5-3.0 µm diam., encrusted by scattered to abundant crystal complexes, which are round in outline, 2–5 µm diam.; skeletal hyphae in trama and context yellowish brown, unbranched or rarely branched 2.5-4.7 µm diam. Hymenial setae rare to abundant, subulate, straight or sometimes slight bent to sickle-shaped or S-shaped, dark brown, the very apex fragile and sometimes broken, hyaline and bent, 35-65 \times 6.5–8 µm; basidia and cystidioles not seen. Basidiospores cylindrical, $(7-)7.5-9(-11) \times 3-4 \mu m$, Q = 2.3-2.7, Qm = 2.41, with a very distinct apiculus, thin-walled, hyaline, IKI-.

Etymology. In honor of Neil Dollinger, a keen Florida naturalist, who collected this species.

Figure 5. Fuscoporia dollingeri sp. nov., basidiomata, lab photo. A – holotype (Dollinger 623); B–C – detail of the lacunous context and strigous outgrows on tube edges (Dollinger 671). Scales: A-C = 10 cm. Photos: J. Vlasák.

Habitat and distribution. On thin branches of undetermined angiosperm trees lying on the ground. Known only from the type locality in the USA, Florida, North Port, Myakkahatchee Creek Environmental Park, where it is however not rare.

Specimens examined. USA. Florida: Sarasota Co., North Port, Myakkahatchee Creek Enviro. Park, hardwood twig, 4 Feb. 2016, Dollinger 652 (JV – paratype!); ibid., 667 (BJFC – paratype!); ibid., 670 (JV); ibid., 671 (JV – paratype!).

Notes. *Fuscoporia dollingeri* develops small basidiomata on the underside of thin branches, very inconspicuous in

the field. They look unique in *Phellinus* s.l. and remind more of small *Hexagonia hydnoides* (Sw.) M. Fidalgo or *Trichaptum perrottetii* (Lév.) Ryvarden, because of dark brown colors and densely strigose pileus cover. Crystals on generative hyphae with simple septa, hymenial setae, and cylindrical, hyaline basidiospores indicate that the species belongs to *Fuscoporia*. Other *Fuscoporia* species with large, cylindrical spores [*F. cinchonensis* (Murrill) Bondartseva & S. Herrera, *F. cylindrospora* (Ryvarden) Y.C. Dai & F. Wu and *F. lutea* (Ryvarden) Y.C. Dai & F. Wu] differ by their small pores and by the absence of strigose pileus cover [Ryvarden & Johansen 1980 as

Figure 6. Fuscoporia dollingerii sp. nov., illustration of microscopic features. A – hymenial setae; B – basidiospores. Scales: A = 20 μ m; B = 10 μ m. Illustrations: J. Vlasák.

[•]*P. chinchonensis*[•] (Murrill) Ryvarden, Ryvarden 2004 as *P. cylindrosporus* Ryvarden and *P. luteus* Ryvarden]. Rather large setae of *F. dollingeri* can be seen under binocular stereoscope on tube walls and they are inconspicuous in young tubes, but distinct and abundant in older ones. Thin-walled hymenial elements were collapsed in all specimens collected and the basidiospores are very rare.

Discussion

Fuscoporia sarcites was a long-recognized neotropical species of Phellinus, despite being similar to other species of Fuscoporia gilva group. This study provides the first detailed phylogenetic discussion of this species and a proper description of its hyphal system. Fuscoporia sarcites was originally described as Polyporus sarcites based on a specimen collected on Saint John Island (U.S. Virgin Islands) (Fries 1851) and it was later combined in the genera Fomes, Fulvifomes, Polystictus, Pyropolyporus and Scindalma. We studied the type of Coriolopsis sarcitiformis Murril, a species described from Mexico (Murril 1912) and regarded as a synonym of F. sarcites (Larsen & Cobb-Poulle 1990). Its macro and micromorphological characteristics fit well with F. sarcites. This work presents the first published record of the species in Guatemala, Honduras, and Venezuela. It has frequently been reported in montane areas (Herrera Fonseca et al. 2002; Valenzuela et al. 2002; Raymundo & Valenzuela 2003; Raymundo et al. 2012; Vasco-Palacios & Franco-Molano 2013; Carranza et al. 2018; Alcántar et al. 2019, this work). There are also herbarium specimens from the United States, Florida (AN 034821) and Dominican Republic (NY 12974) that require revision.

The new species proposed here, *F. dollingeri*, presents a particular combination of features: small, annual basidiomata with large pores and hydnoid processes on pileus and sometimes also on tube edges. Both morphological (crystals on simple-septate generative hyphae, hymenial setae, and ellipsoid, hyaline basidiospores) and phylogenetic evidence indicate that the species belongs to *Fuscoporia*.

As shown by the phylogenetic analyses, *F. sarcites* and *F. dollingeri* are grouped with *F. atlantica*, *F. formosana*, *F. gilva* and *F. setifera*, conforming to the '*Fuscoporia gilva* group' (Chen et al. 2020). This group is characterized by annual growth, effused-reflexed to pileate basidiomata, presence of hymenial setae and ellipsoid to cylindric basidiospores. Remarkably, this group displays a broad macromorphological range, encompassing taxa with glabrous to hispid and conspicuously hairy pilei, and with regular to irpicoid hymenophore. Except for *F. setifera* from Asia, all species in this group are Neotropical. It is worth noting that morphologically distinct, but phylogenetically related, species have already been reported in *Fuscoporia* (Chen et al. 2020).

Although numerous *Hymenochaetaceae* species with intercontinental distributions are known (Ryvarden 2004), some recently described taxa are known to have a limited distribution range or to be restricted to specific hosts and vegetation types (e.g., Raymundo et al. 2013; Pires et al. 2015). Despite *F. sarcites* being widespread in the

Neotropics and can be found growing in multiple host species, most records have been made from high-elevation forests (Valenzuela et al. 2002; Mueller et al. 2006; Raymundo et al. 2012; Carranza et al. 2018), such as Cloud Forests, suggesting a habitat preference that must be investigated further. Until now, *F. dollingeri* has only been found growing on fallen branches from unknown angiosperm species in lowland tropical forests in Florida.

Our phylogenetic analysis also shows that the specimen JV1612/28-D of *F. atlantica* collected in Guadeloupe is closely related to sequences originating from South-Eastern Brazil, the type locality of the species (Pires et al. 2015), confirming its identification. Consequently, this is the first record of this species outside of the Atlantic Rainforest Domain in Brazil, greatly extending its distribution and suggesting a potentially widespread distribution across the Neotropical Forests.

Since the phylogenetic studies of Wagner & Fischer (2001, 2002), Fuscoporia has become a widely accepted genus, but its relationship with closely related genera with monomitic hyphal system, namely Coniferiporia, Fulvoderma and Phellinidium, is still uncertain (Zhou et al. 2018, Wu et al. 2022). Although Wagner & Fischer (2002) treat Fuscoporia as having monomitic or dimitic species, a monodimitic hyphal system as the one found in F. sarcites has never been reported previously. The presence of multiple hyphal types in the same basidioma (monodimitic or intermediary hyphal system) have been observed in other genera of Hymenochaetaceae (Corner 1991; Wagner & Fischer 2001; Hattori et al. 2014; Zhou et al. 2015; Drechsler-Santos et al. 2016; Chen et al. 2017; Salvador-Montoya et al. 2018). The hyphal structure in numerous Hymenochaetaceae genera is more complex than previously thought. This may be the case in most of them, and thus we reinforce the importance of the detailed observation of the hyphal system in all the distinct parts of the basidiomata.

Identification key to neotropical *Fuscoporia* species

1	Tramal setae present 2
	Tramal setae absent 6
2(1)	Pores 1–3 per mm <i>F. contigua</i> complex (Chen et al. 2019) Pores <3 per mm
3(2)	Basidiospores globose to subglobose, up to 4.5 µm long
4(3)	Pores 7–9 per mm; hymenial setae 24–36 μm long
5(3)	Hymenophore regular, basidiospores 7–8 × 1.6–2 μm <i>F. contiguiformis</i> Hymenophore labyrinthiform with some sinuous pores; basidiospores 4–5 × 2–2.5 μm <i>F. palmicola</i>
6(1)	Hymenial setae with hooked apex and/or with small projections, spines or branches

- 9(8) Pileus flexible to leathery, glabrous to tomentose, developing a crust in the pileus surface *F. atlantica*Pileus hard, glabrous, never developing a crust
 *F. wahlbergii* group (incl. *F. marquesiana*)
- 11(10) Basidiospores subglobose to ellipsoid, >4 μm long ...
 F. chrysea Basidiospores narrowly ellipsoid to cylindrical, 4–8 μm

long 12

- 14(13) Pileus surface hirsute, composed of thick "hairs"; lacerated dissepiment at maturity; context monomitic 15
 Pileus surface velutinate; dissepiment entire; context dimitic 16
- 16(14) Basidiospores cylindrical to allantoid *F. viticola* Basidiospores ellipsoid 17
- 17(16) Basidiomata triquetrous to ungulate; hymenial setae ventricose, <16 μm wide *F. mesophila* Basidiomata applanate; hymenial setae subulate to ventricose, rarely >10 μm *F. senex*
- 19(18) Tubes distinctly stratified; context yellow *F. rhabarbarina*
 - Tubes indistinctly stratified or annual; context brown 20
- 20(19) Hymenial setae subulate to ventricose; basidiospores 3.6–4.8 × 2–3 μm *F. callimorpha* Hymenial setae ventricose to subulate; basidiospores 4–5 × 2.5–3 μm *F. gilva* group (incl. *F. licnoides* and *F. semiarida*)

Acknowledgments

The authors are grateful to Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), São Joaquim National Park Management Team and Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas (PPGFAP/UFSC) for general support; the FLOR Fungarium staff for loans; to Susana Pereira at BAFC Fungarium for allowing the revision of Coriolopsis sarcitiformis type; to João P. M. Araújo the NY Herbarium staff for allowing the revision of Phellinus sarcites type; to Denyse K. S. Guimarães, Genivaldo Alves-Silva, Luís A. Funez and Weslley R. Nardes for providing important specimens; to the reviewers for their valuable contributions to the manuscript. This work was supported by the Brazilian Program for Biodiversity Research (PPBio) Atlantic Forest Network (CNPq 457451/2012-9), CNPq/Capes/FAPs/BC-Fundo Newton/PELD nº 15/2016 and FAPESC/CNPq (PRONEM 2020TR733), PROTAX (FAPESC 2021TR390, CNPq 441821/2020-0), and Universal 01/2016 (no. 421966/2016-5). Felipe Bittencourt is supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, Financial Code 001), PPGFAP and The Society of Systematic Biologists (Mini-ARTS Award). Diogo Henrique Costa-Rezende is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (process no. 443316/2019-8). Study of Jiří Kout was financed with University of West Bohemia grant SGS-2020-032. Aristóteles Góes-Neto receives a research grant for scientific productivity from CNPq, Brazil (no. 310764/2016-5). Study of Josef Vlasák was financed by the institutional support of the Academy Sciences of the Czech Republic RVO: 60077344. Elisandro Ricardo Drechsler-Santos is supported by CNPq (process no. 311158/2018-8 and 310150/2022-1). This research is also part of the MIND.Funga Project: (http://www.http://mindfunga.ufsc.br/).

References

- Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. 2004. Image processing with ImageJ. *Biophotonics International* 11(7): 36–42.
- Alcántar, O. R., García, D. F. & Herrera-Fonseca, M. D. J. 2019. Fungi catalogue from San Sebastian del Oeste, Jalisco, Mexico. *Acta Botánica Mexicana* 126: e1364. https://doi.org/10.21829/ abm126.2019.1364
- Alves-Silva, G., Reck, M. A., Silveira, R. M. B., Bittencourt, F., Robledo, G. L., Góes-Neto, A. & Drechsler-Santos, E. R. 2020. The Neotropical *Fomitiporia (Hymenochaetales, Basidiomycota)*: the redefinition of *F. apiahyna* s.s. allows revealing a high hidden species diversity. *Mycological Progress* 19(8): 769–790. https://doi. org/10.1007/s11557-020-01593-5
- Amalfi, M., Yombiyeni, P. & Decock, C. 2010. Fomitiporia in sub-Saharan Africa: morphology and multigene phylogenetic analysis support three new species from the Guineo-Congolian rainforest. Mycologia 102(6): 1303–1317. http://doi.org/10.3852/09-083
- Amalfi, M., Raymundo, T., Valenzuela, R. & Decock, C. 2012. Fomitiporia cupressicola sp. nov., a parasite on Cupressus arizonica, and additional unnamed clades in the southern USA and northern Mexico, determined by multilocus phylogenetic analyses. Mycologia 104(4): 880–893. https://doi.org/10.3852/11-196
- Baltazar, J. M. & Gibertoni, T. B. 2010. New combinations in *Phellinus* s.l. and *Inonotus* s.l. *Mycotaxon* 111(1): 205–208. https://doi.org/10.5248/111.205
- Bandala-Muñoz, V. M., Guzmán, G. & Montoya, L. 1993. Los hongos del grupo de los Poliporáceos conocidos en México. Reporte Científico, Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León 13: 1–55.
- Bian, L. S., Wu, F. & Dai, Y. C. 2016. Two new species of *Coltricia* (*Hymenochaetaceae*, *Basidiomycota*) from southern China based

on evidence from morphology and DNA sequence data. *Mycolog-ical Progress* 15(3): 27. https://doi.org/10.1007/s11557-016-1173-0

- Binder, M. & Hibbett, D. S. 2002. Higher-level phylogenetic relationships of homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. *Molecular Phylogenetics and Evolution* 22(1): 76–90. https://doi.org/10.1006/mpev.2001.1043
- Binder, M. & Hibbett, D. 2003. Oligonucleotides. AFTOL Project. http://www.clarku.edu/faculty/dhibbett/Protocols_Folder/Primers/ Primers.pdf
- Brazee, N. J. 2015. Phylogenetic relationships among species of *Phell-inus sensu stricto*, cause of white trunk rot of hardwoods, from Northern North America. *Forests* 6(11): 4191–4211. https://doi. org/10.3390/f6114191
- Brazee, N. J. & Lindner, D. L. 2013. Unravelling the *Phellinus pini* s.l. complex in North America: a multilocus phylogeny and differentiation analysis of *Porodaedalea*. *Forest Pathology* 43(2): 132–143. https://doi.org/10.1111/efp.12008
- Campos-Santana, M. D., Robledo, G., Decock, C. & Silveira, R. M. B. D. 2015. Diversity of the poroid *Hymenochaetaceae (Basidiomycota)* from the Atlantic Forest and Pampa in Southern Brazil. *Cryptogamie, Mycologie* 36(1): 43–78. https://doi.org/10.7872/crym.v36. iss1.2015.43
- Campos-Santana, M. D., Amalfi, M., Castillo, G. & Decock, C. 2016. Multilocus, DNA-based phylogenetic analyses reveal three new species lineages in the *P. gabonensis-P. caribaeo-quercicola* species complex, including *Phellinus amazonicus* sp. nov. *Mycologia* 108(5): 939–953. https://doi.org/10.3852/15-173
- Carranza, J., DiStefano, J. F., Marín, W. & Mata, M. 2018. Estudio comparativo de los macrohongos presentes en troncos de roble en dos bosques montanos neotropicales de Costa Rica. *Polibotánica* 45(35–56).
- Chang, T. T. & Chou, W. N. 1998. Two new species of *Inonotus* from Taiwan. *Mycological Research* 102(7): 788–790. https://doi. org/10.1017/S0953756297005844
- Chen, Q. & Dai, Y. C. 2019. Two new species of *Fuscoporia (Hymeno-chaetales, Basidiomycota)* from southern China based on morphological characters and molecular evidence. *MycoKeys* 61: 75–89. https://doi.org/10.3897/mycokeys.61.46799
- Chen, Q. & Yuan, Y. 2017. A new species of Fuscoporia (Hymenochaetales, Basidiomycota) from southern China. Mycosphere 8(6): 1238–1245. https://doi.org/10.5943/mycosphere/8/6/9
- Chen, Y., Zhu, L., Xing, J. & Cui, B. 2017. Three new species of *Phylloporia (Hymenochaetales)* with dimitic hyphal systems from tropical China. *Mycologia* 109(6): 951–964. https://doi.org/10.10 80/00275514.2017.1410692
- Chen, Q., Wu, F., Ji, X. H., Si, J., Zhou, L. W., Tian, X. M., Vlasák, J. & Dai, Y. C. 2019. Phylogeny of the genus *Fuscoporia* and taxonomic assessment of the *F. contigua* group. *Mycologia* 111(3): 423–333. https://doi.org/10.1080/00275514.2019.1570749
- Chen, Q., Du, P., Vlasák, J., Wu, F. & Dai, Y. C. 2020. Global diversity and phylogeny of *Fuscoporia (Hymenochaetales, Basidiomycota)*. *Mycosphere* 11(1): 1477–1513. https://doi.org/10.5943/mycosphere/11/1/10
- Corner, E. J. H. 1991. Ad Polyporaceas VII: The Xanthochroic Polypores. Nova Hedwigia 101: 1–176.
- Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods* 9(8): 772. https://doi.org/10.1038/nmeth.2109
- Decock, C., Figueroa, S. H., Robledo, G. & Castillo, G. 2006. Phellinus caribaeo-quercicolus sp. nov., parasitic on Quercus cubana: taxonomy and preliminary phylogenetic relationships. Mycologia 98(2): 265–274. https://doi.org/10.1080/15572536.2006.11832699
- Decock, C., Figueroa, S. H., Robledo, G. L. & Castillo, G. 2007. Fomitiporia punctata (Basidiomycota, Hymenochaetales) and its presumed taxonomic synonyms in America: taxonomy and phylogeny of some species from tropical/subtropical areas. Mycologia 99(5): 733–752. http://doi.org/10.3852/mycologia.99.5.733

- Decock, C., Valenzuela, R. & Castillo, G. 2010. Studies in *Perenniporia* poria s.l. *Perenniporiella tepeitensis* comb. nov., an addition to *Perenniporiella*: evidence from morphological and molecular data. *Cryptogamie*, *Mycologie* 31(4): 419–429.
- Decock, C., Yombiyeni, P. & Memiaghe, H. 2015. *Hymenochaetaceae* from the Guineo-Congolian rainforest: *Phylloporia flabelliforma* sp. nov. and *Phylloporia gabonensis* sp. nov., two undescribed species from Gabon. *Cryptogamie, Mycologie* 36(4): 449–467. https://doi. org/10.7872/crym/v36.iss4.2015.449
- Dentinger, B. T. M., Margaritescu, S. & Moncalvo, J. M. 2010. Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. *Molecular Ecology Resources* 10: 628–633. https://doi.org/10.1111/j.1755-0998.2009.02825.x
- Drechsler-Santos, E. R., Groposo, C. & Loguercio-Leite, C. 2008. Additions to the knowledge of lignocellulolytic basidiomycetes in forests from Santa Catarina, Southern Brazil. *Mycotaxon* 103: 197–200.
- Drechsler-Santos, E. R., Robledo, G. L., Lima-Junior, N. C., Malosso, E., Reck, M. A., Gibertoni, T. B., Cavalcanti, M. A. Q. & Rajchenberg, M. 2016. *Phellinotus*, a new neotropical genus in the *Hymenochaetaceae* (*Basidiomycota*, *Hymenochaetales*). *Phytotaxa* 261(3): 218–239. http://dx.doi.org/10.11646/phytotaxa.261.3.2
- Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T. & Wilson, A. 2010. *Geneious v.4.8.5, developed by Biomatters.* http://www.geneious.com/
- Ferreira-Lopes, V., Robledo, G. L., Reck, M. A., Góes-Neto, A. & Drechsler-Santos, E. R. 2016. *Phylloporia spathulata sensu stricto* and two new South American stipitate species of *Phylloporia* (*Hymenochaetaceae*). *Phytotaxa* 257(2): 133–148. https://doi. org/10.11646/phytotaxa.257.2.3
- Fiasson, J. L. & Niemelä, T. 1984. The Hymenochaetales: a revision of the European poroid taxa. Karstenia 24: 14–28. https://doi. org/10.29203/ka.1984.224
- Figueiró, G. K., Robledo, G. L., Reck, M. A., Goes-Neto, A. & Drechsler-Santos, E. R. 2016. *Antrodia neotropica* sp. nov. (*Polyporales, Basidiomycota*): a new South American species of *Antrodia* s.s. from Brazil based on morphological, molecular and ecological data. *Nova Hedwigia* 103(1–2): 125–143.
- Fischer, M., Edwards, J., Cunnington, J. H. & Pascoe, I. G. 2005. Basidiomycetous pathogens on grapevine: a new species from Australia – Fomitiporia australiensis. Mycotaxon 92: 85–96.
- Herrera Fonseca, M. J., Guzmán-Dávalos, L. & Rodríguez, O. 2002. Contribución al conocimiento de la micobiota de la región de San Sebastián del Oeste, Jalisco, México. Acta Botanica Mexicana 58: 19–50. https://doi.org/10.21829/abm58.2002.888
- Fries, E. M. 1851. Novae symbolae mycologicae, in peregrinis terris a botanicis danicis collectae. Nova Acta Regiae Societatis Scientiarum Upsaliensis 3(1): 17–136. https://doi.org/10.5962/bhl. title.112967
- Góes-Neto, A., Loguercio-Leite, C. & Guerrero, R. T. 2005. DNA extraction from frozen field-collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. *Biotemas* 18(2): 19–32.
- Gomes-Silva, A. C., Ryvarden, L. & Gibertoni, T. B. 2013. Inonotus amazonicus sp. nov., I. calcitratus comb. nov. and notes on Phylloporia (Hymenochaetaceae, Agaricomycetes) from the Brazilian Amazonia. Mycoscience 54(2): 116–121. https://doi.org/10.1016/j. myc.2012.09.005
- González, V., Sánchez-Torres, P., Hinarejos, R. & Tuset, J. J. 2009 Inonotus hispidus fruiting bodies on grapevines with esca symptoms in mediterranean areas of Spain. Journal of Plant Pathology 91(2): 465–468. http://dx.doi.org/10.4454/jpp.v91i2.979
- Groposo, C., Loguercio-Leite, C. & Góes-Neto, A. 2007. Fuscoporia (basidiomycota, Hymenochaetales) in Southern brazil. Mycotaxon 101(1): 55–63.

- Guglielmo, F., Bergemann, S. E., Gonthier, P., Nicolotti, G. & Garbelotto, M. 2007. A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees. *Journal of Applied Microbiology* 103(5): 1490–150. https://doi. org/10.1111/j.1365-2672.2007.03378.x
- Guindon, S. & Gascuel, O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. *Systematic Biology* 52: 696–704. https://doi.org/10.1080/10635150390235520
- Hattori, T., Sakayaroj, J., Jones, E. B. G., Suetrong, S., Preedanon, S. & Klaysuban, A. 2014. Three species of *Fulvifomes (Basidiomycota, Hymenochaetales)* associated with rots on mangrove tree *Xylocarpus granatum* in Thailand. *Mycoscience* 55(5): 344–354. https://doi.org/10.1016/j.myc.2014.01.001
- Jang, Y., Lee, S. W., Jang, S., Lim, Y. W., Lee, J. S. & Kim, J. J. 2012. Four unrecorded wood decay fungi from Seoul in Korea. *Mycobiology* 40(3): 195–201. http://doi.org/10.5941/MYCO.2012.40.3.195
- Jeong, W. J., Lim, Y. W., Lee, J. S. & Jung, H. S. 2005. Phylogeny of *Phellinus* and related genera inferred from combined data of ITS and mitochondrial SSU rDNA sequences. *Journal of Microbiology and Biotechnology* 15(5): 1028–1038.
- Ji, X. H., Vlasák, J., Zhou, L. W., Wu, F. & Dai, Y. C. 2017. Phylogeny and diversity of *Fomitiporella (Hymenochaetales, Basidiomycota)*. *Mycologia* 109(2): 308–322. https://doi.org/10.1080/00275514.20 17.1305943
- Katoh, K. & Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30(4): 772–780. https://doi.org/10.1093/molbev/mst010
- Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33(7): 1870–1874. https://doi.org/10.1093/ molbev/msw054
- Larsen, M. J. & Cobb-Poulle, L. A. 1990. Phellinus (Hymenochaetaceae). A Survey of the World Taxa. Synopsis Fungorum 3: 1–206.
- Larsson, K. H., Parmasto, E., Fischer, M., Langer, E., Nakasone, K. K. & Redhead, S. A. 2006. *Hymenochaetales*: a molecular phylogeny for the hymenochaetoid clade. *Mycologia* 98(6): 926–936. https:// doi.org/10.1080/15572536.2006.11832622
- Lim, Y. W., Yeung, Y. C. A., Sturrock, R., Leal, I. & Breuil, C. 2005. Differentiating the two closely related species, *Phellinus weirii* and *P. sulphurascens. Forest Pathology* 35(4): 305–314. https:// doi.org/10.1111/j.1439-0329.2005.00410.x
- Loguercio-Leite, C. & Wright, J. E. 1995. The genus *Phellinus (Hyme-nochaetaceae)* on the Island of Santa Catarina, Brazil. *Mycotaxon* 54: 361–388.
- Lowe, J. L. 1957. Polyporaceae of North America, The Genus Fornes. New York State University College of Forestry at Syracuse University, Technical Publication 80.
- Miller, M. A., Pfeiffer, W. & Schwartz, T. 2011. The CIPRES science gateway: a community resource for phylogenetic analyses. *Proceed*ings of the 2011 TeraGrid Conference: Extreme Digital Discovery 41: 1–8. http://dx.doi.org/10.1145/2016741.2016785
- Mueller, G. M., Halling, R. E., Carranza, J., Mata, M. & Schmit, J. P. 2006. Saprotrophic and ectomycorrhizal macrofungi of Costa Rican oak forests. In: Kappelle, M. (ed.), *Ecology and Conservation of Neotropical Montane Oak Forests*, pp. 55–68. Springer, Berlin, Heidelberg.
- Murrill, W. A. 1912. The Polyporaceae of Mexico. Bulletin of the New York Botanical Garden 8: 137–153.
- Murrill, W. A. 1915. Tropical Polypores. New York, 113 pp.
- Niemelä, T., Wagner, T., Fischer, M. & Dai, Y. C. 2001. Phellopilus gen. nov. and its affinities within Phellinus s. lato and Inonotus s. lato (Basidiomycetes). Annales Botanici Fennici 38: 51–62. https:// www.jstor.org/stable/23726833
- Olmo-Ruiz, M., García-Sandoval, R., Alcántara-Ayala, O., Véliz, M. & Luna-Vega, I. 2017. Current knowledge of fungi from Neotropical montane cloud forests: distributional patterns and composition.

Biodiversity and Conservation 26(8): 1919–194. https://doi. org/10.1007/s10531-017-1337-5

- Park, H. S., Kim, G. Y., Nam, B. H., Lee, S. J. & Lee, J. D. 2002. The determination of the partial 28S ribosomal DNA sequences and rapid detection of *Phellinus linteus* and related species. Mycobiology 30(2):82–87. https://doi.org/10.4489/MYCO.2002.30.2.082
- Pildain, M. B., Pérez, G. A., Robledo, G., Pappano, D. B. & Rajchenberg, M. 2017. Arambarria the pathogen involved in canker rot of Eucalyptus, native trees wood rots and grapevine diseases in the Southern Hemisphere. Forest Pathology 47(6):e12397. https://doi. org/10.1111/efp.12397
- Pildain, M. B., Cendoya, R. R., Ortiz-Santana, B., Becerra, J. & Rajchenberg, M. 2018. A discussion on the genus *Fomitiporella (Hymenochaetaceae, Hymenochaetales)* and first record of *F. americana* from southern South America. *MycoKeys* (38): 77–91. https://doi. org/10.3897/mycokeys.38.27310
- Pires, R. M., Motato-Vásquez, V. & Gugliotta, A. M. 2015. Fuscoporia atlantica sp. nov., a new polypore from the Brazilian Atlantic Rainforest. Mycotaxon 130(3): 843–855. https://doi.org/10.5248/130.843
- Rajchenberg, M., Pildain, M. B., Bianchinotti, M. V. & Barroetavena, C. 2015. The phylogenetic position of poroid *Hymenochaetaceae* (*Hymenochaetales, Basidiomycota*) from Patagonia, Argentina. *Mycologia* 107(4): 754–767. https://doi.org/10.3852/14-170
- Ramesh, M., Resnick, E., Hui, Y., Maglione, P. J., Mehta, H., Kattan, J., Bouvier, N. M., LaBombardi, V., Victor, T. R., Chaturvedi, S. & Cunningham-Rundles, C. 2014. *Phellinus tropicalis* abscesses in a patient with chronic granulomatous disease. *Journal of Clinical Immunology* 34(2): 130–133. https://doi.org/10.1007/s10875-013-9967-1
- Raymundo, T. & Valenzuela, R. 2003. Los poliporáceos de México VI. Los hongos poliporoides del estado de Oaxaca. *Polibotánica* 16: 79–111.
- Raymundo, T., Valenzuela, R., Díaz-Moreno, R., Cifuentes, J. & Pacheco, L. 2012. La familia *Hymenochaetaceae* en México V. Especies del bosque las Bayas, Durango. *Boletín de la Sociedad Micológica de Madrid* 36: 37–51.
- Raymundo, T., Valenzuela, R. & Esqueda, M. 2013. *Hymenochaetaceae* from México 6. A new *Fuscoporia* species from the Sonoran desert. *Mycotaxon* 125(1): 37–43. https://doi.org/10.5248/125.37
- Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
- Ruíz, A. & Varela, A. 2006. Nuevos registros de *Aphyllophorales (Basidiomycota)* en bosque montano húmedo y de niebla de Colombia. *Caldasia* 28(2): 259–266.
- Ryvarden, L. 1991. Genera of Polypores: Nomenclature and Taxonomy. Synopsis Fungorum 5: 1–363.
- Ryvarden, L. 2004. Neotropical polypores part I: Introduction, Hymenochaetaceae and Ganodermataceae. Synopsis Fungorum 19: 1–227.
- Ryvarden, L. & Johansen, I. 1980. A preliminary polypore flora of East Africa. Fungiflora, Oslo, 636 pp.
- Salvador-Montoya, C. A., Popoff, O. F., Reck, M. A. & Drechsler-Santos, E. R. 2018. Taxonomic delimitation of *Fulvifomes robiniae* (*Hymenochaetales, Basidiomycota*) and related species in America: *F. squamosus* sp. nov. *Plant Systematics and Evolution* 304(3): 445–459. https://doi.org/10.1007/s00606-017-1487-7
- Sambrook, J., Fritsch, E. F. & Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2 ed. Cold Spring Harbor, New York, 1689 pp.
- Spirin, V., Vlasák, J. & Niemelä, T. 2014. Fuscoporia insolita (Hymenochaetales, Basidiomycota), a new species from Russian Far East. Annales Botanici Fennici 51(6): 403–406.
- Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

- Thiers, B. 2023. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. Available at: https://sweetgum.nybg.org/science/ih/, accessed 19 August 2023.
- Tsujiyama, S. I. 2011. Two Inonotus species newly found in Japan, Inonotus formosanus and Inonotus nodulosus. Journal of Mushrooms 9(3): 132–134. https://doi.org/10.14480/JM.2011.9.3.132
- Tura, D., Zmitrovich, I. V., Wasser, S. P., Raats, D. & Nevo, E. 2012. Phylogenetic analyses of *Phellinus* s.l. and *Inonotus* s.l. (*Hymenochaetales*) inferred from rDNA ITS sequences and morphological data. *Systematics and Evolution of Fungi*: 253–273. http://dx.doi.org/10.1201/b11606-10
- Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J. & Smith, G. F. (eds). 2018. *International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July* 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten. https://doi.org/10.12705/Code.2018
- Valenzuela, R., Huerta, C. P. & Nava, R. F. 2002. Los Poliporáceos de México V. Algunas especies del norte del estado de Querétaro. *Polibotánica* 14: 85–122.
- Vasco-Palacios, A. M. & Franco-Molano, A. E. 2013. Diversity of Colombian macrofungi (Ascomycota-Basidiomycota). Mycotaxon 121(1): 100–158.
- Vlasák, J., Kout, J., Chen, Q. & Dai, Y. C. 2020. Fuscoporia caymanensis sp. nov. (Basidiomycota, Hymenochaetaceae), a new species from tropical America. Phytotaxa 472(2): 135–146. https://doi. org/10.11646/phytotaxa.472.2.4
- Wagner, T. & Fischer, M. 2001. Natural groups and a revised system for the European poroid *Hymenochaetales (Basidiomycota)* supported by nrLSU rDNA sequence data. *Mycological Research* 105(7): 773–782. https://doi.org/10.1017/S0953756201004257
- Wagner, T. & Fischer, M. 2002. Proceedings towards a natural classification of the worldwide taxa *Phellinus* s.l. and *Inonotus* s.l., and phylogenetic relationships of allied genera. *Mycologia* 94(6): 998–1016. https://doi.org/10.1080/15572536.2003.11833156
- Wang, X. W., Liu, S. L. & Zhou, L. W. 2023. An updated taxonomic framework of *Hymenochaetales (Agaricomycetes, Basidiomycota)*. *Mycosphere* 14(1): 452–496. https://doi.org/10.5943/mycosphere/14/1/6
- Wu, F., Zhou, L. W. & Dai, Y. C. 2016. Neomensularia duplicata gen. et sp. nov. (Hymenochaetales, Basidiomycota) and two new combinations. Mycologia 108(5): 891–898. https://doi.org/10.3852/16-020
- Wu. F., Zhou, L. W., Vlasák, J. & Dai, Y. C. 2022. Global diversity and systematics of *Hymenochaetaceae* with poroid hymenophore.

Fungal Diversity 113(1): 1–192. https://doi.org/10.1007/s13225-021-00496-4

- Yombiyeni, P., Douanla-Meli, C., Amalfi, M. & Decock, C. 2011. Poroid *Hymenochaetaceae* from Guineo–Congolian rainforest: *Phellinus* gabonensis sp. nov. from Gabon – taxonomy and phylogenetic relationships. *Mycological Progress* 10(3): 351–362. https://doi. org/10.1007/s11557-010-0708-z
- Yuan, H. S. et al. 2020. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. *Fungal Diversity* 104(1): 1–266. https://doi.org/10.1007/s13225-020-00461-7
- Zhao, R. L., Li, G. J., Sánchez-Ramírez, S., Stata, M., Yang, Z. L., Wu, G., Dai, Y. C., He, S. H., Cui, B. K., Zhou, J. L., Wu, F., He, M.Q, Moncalvo, J. M. & Hyde, K. D. 2017. A six-gene phylogenetic overview of *Basidiomycota* and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. *Fungal Diversity* 84(1): 43–74. https://doi.org/10.1007/s13225-017-0381-5
- Zhou, L. W. 2015a. Cylindrosporus flavidus gen. et comb. nov. Hymenochaetales, Basidiomycota segregated from Onnia. Phytotaxa 219(3): 276–282. https://doi.org/10.11646/phytotaxa.219.3.7
- Zhou, L. W. 2015b. Phellinopsis asetosa sp. nov. (Hymenochaetales, Basidiomycota) and an emended circumscription of Phellinopsis with a key to accepted species. Mycoscience 56(2): 237–242. https:// doi.org/10.1016/j.myc.2014.07.003
- Zhou, L. W., Spirin, V. & Vlasák, J. 2014. Phellinidium asiaticum sp. nova (Hymenochaetales, Basidiomycota), the Asian kin of P. fragrans and P. pouzarii. Annales Botanici Fennici 51(3): 167–172.
- Zhou, L. W., Vlasák, J., Decock, C., Assefa, A., Stenlid, J., Abate, D., Wu, S. H. & Dai, Y. C. 2015. Global diversity and taxonomy of the *Inonotus linteus* complex (*Hymenochaetales, Basidiomycota*): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Diversity 77(1): 335–347. https://doi.org/10.1007/s13225-015-0335-8
- Zhou, L. W., Vlasák, J. & Dai, Y. C. 2016. Taxonomy and phylogeny of *Phellinidium (Hymenochaetales, Basidiomycota)*: a redefinition and the segregation of *Coniferiporia* gen. nov. for forest pathogens. *Fungal Biology* 120(8): 988–1001. https://doi.org/10.1016/j. funbio.2016.04.008
- Zhou, L. W., Ji, X. H., Vlasák, J. & Dai, Y. C. 2018. Taxonomy and phylogeny of *Pyrrhoderma*: a redefinition, the segregation of *Fulvoderma* gen. nov. and four new species. *Mycologia* 110(5): 872–889. https://doi.org/10.1080/00275514.2018.1474326
- Zhu, L., Song, J., Zhou, J. L., Si, J. & Cui, B. K. 2019. Species diversity, phylogeny, divergence time, and biogeography of the genus Sanghuangporus (Basidiomycota). Frontiers in Microbiology 10: 812. https://doi.org/10.3389/fmicb.2019.00812