Three new lichen species from Macaronesia belonging in \textit{Ramalinaceae}, with the description of a new genus

Pieter P. G. van den Boom1,2* & Nicolas Magain2

Abstract. \textit{Tylocliostomum} is described as a new genus and \textit{T. viridifarinosum} as a new species. Two \textit{Bacidina} species, \textit{B. pallidocarpa} and \textit{B. violacea}, are also described as new to science. They all occur in Macaronesia (Azores, Madeira).

Key words: Ascomycota, Lecanorales, Tylothallia, type species, molecular phylogenetics

Introduction

An extensive study of lichens and lichenicolous fungi in the Azores and Madeira by the first author resulted in several works already published from Sao Miguel and Terceira (van den Boom 2015b, 2016; Guzow-Krzemińska et al. 2019) and from Madeira (van den Boom 2015a, b; van den Boom & Ertz 2014). Several \textit{Bacidia} or \textit{Bacidina} species are recorded in van den Boom (2015a) and van den Boom & Alvarado (2019). Ten species of these genera are recorded in the checklist of Madeira, including the endemic species \textit{Bacidia albonigrans}, \textit{B. endoleucoides} and \textit{B. fritzei} (Carvalho et al. 2008). Fifteen species of these genera are recorded in the checklist of the Azores, with none of them being endemic (Aptroot et al. 2010).

In this study we describe two new \textit{Bacidina} species: \textit{B. violacea}, known from the Azores and Madeira, and \textit{B. pallidocarpa}, endemic to the Azores. \textit{Tylocliostomum} is described as a new genus and \textit{T. viridifarinosum} as a new species, known only from the type locality in Madeira.

Materials and methods

Material acquisition

This study is mainly based on extensive collections of \textit{Bacidia} s.l. made by the first author on several Macaronesian islands in 2017 and 2019 and hosted in LG and the private herbarium of the first author. Hand-cut apothecial sections and squashed thallus preparations were examined with a compound microscope (Olympus BX2). Ascospores and other anatomical details were studied and measured in water or in 10% potassium hydroxide (K) if features were otherwise unseparated. In each collection (~5 well-developed ascospores representing the observed variation of size and shape), conidia and paraphyses were measured to 0.1 \(\mu\)m accuracy.

Chemical spot tests were performed under a compound microscope using sodium hypochlorite (C) and K (Orange et al. 2001). Pigments were determined following the system of Meyer & Printzen (2000). The crystals from all studied specimens were investigated in tissue sections by using a compound microscope with polarization filters. For a detailed comparison of the main diagnostic features of the two new \textit{Bacidina} species and the most similar \textit{Bacidina} species, see Table 1.

Molecular data

DNA was extracted from two specimens of \textit{Bacidina pallidocarpa} and two specimens of \textit{B. violacea}, and two DNA extractions were performed from the same material of \textit{Tylocliostomum viridifarinosum} (Table S1). Extraction of DNA followed the protocol of Cubero et al. (1999). We sequenced the ribosomal nuclear loci ITS using primers ITS1F (Gardes & Bruns 1993) and ITS4 (White et al. 1990), the mitochondrial ribosomal locus mtSSU with primers SSU1 and SSU3R (Zoller et al. 1999), and part of the protein-coding gene RPB1 with RPB1AF (Stiller & Hall 1997) and VH6R (Hofstetter et al. 2007).

For the three loci, PCR conditions were as follows: initial denaturation at 95°C for 1 min, followed by 35 cycles of denaturation at 95°C for 45 sec, a different annealing phase for each locus, then an elongation phase of 1 min at 72°C, followed by a final elongation phase of 10 min at...
Table 1. Main diagnostic features of <i>Bacidina</i> species similar to <i>B. pallidocarpa</i> and <i>B. violacea</i>.

<table>
<thead>
<tr>
<th>Species</th>
<th>Thallus</th>
<th>Colour</th>
<th>Apothecia</th>
<th>Margin</th>
<th>Disc</th>
<th>Ascospores</th>
<th>Pycnidia</th>
</tr>
</thead>
<tbody>
<tr>
<td><i>B. pallidocarpa</i></td>
<td>smooth to fine warted, granular to fine isidiate</td>
<td>greenish with ± pale brown tinge</td>
<td>0.15–0.55 mm</td>
<td>somewhat paler than disc, soon becoming immarginate</td>
<td>white to pale cream with yellowish tinge</td>
<td>25–38 × 1–1.2 µm</td>
<td>white, one type</td>
</tr>
<tr>
<td><i>B. violacea</i></td>
<td>areolate, farinose</td>
<td>yellowish brown to very pale brown</td>
<td>0.2–0.7 mm</td>
<td>paler than disc, with violet tinge</td>
<td>dark brown</td>
<td>25–50 × 1–1.5 µm</td>
<td>unknown</td>
</tr>
<tr>
<td><i>B. adastra</i></td>
<td>sorediate to thickly leprose</td>
<td>green</td>
<td>0.4–0.7 mm</td>
<td>concolorous with or slightly paler than disc</td>
<td>pale pink to dark blue-black</td>
<td>40–50 × 0.9–1.2 µm</td>
<td>white, one type</td>
</tr>
<tr>
<td><i>B. brittoniana</i></td>
<td>rimose to areolate, areoles convex</td>
<td>pale grey to grey-green</td>
<td>0.2–0.4 mm</td>
<td>concolorous with or slightly paler than disc, finally excluded</td>
<td>pale pink to purple-brown</td>
<td>23–41 × 1.7–2.4 µm</td>
<td>concolorous with apothecia, one type</td>
</tr>
<tr>
<td><i>B. californica</i></td>
<td>wrinkled or warted, ± rimose, or granular areolate</td>
<td>pale pink to orange brown</td>
<td>0.4–0.7 mm</td>
<td>concolorous with or paler or darker than disc</td>
<td>pale pink to purple-brown to blackish</td>
<td>31–53 × 1.9–3.3 µm</td>
<td>70–100 µm, two types</td>
</tr>
<tr>
<td><i>B. chloroticula</i></td>
<td>scurfy granular</td>
<td>dull or grey-green to pale brownish</td>
<td>0.1–0.2 mm</td>
<td>paler than disc</td>
<td>whitish or pink-orange to pale grey-brown</td>
<td>20–38 × 1–1.8 µm</td>
<td>white, one type</td>
</tr>
<tr>
<td><i>B. contexta</i></td>
<td>ruguloose to microsquamulose</td>
<td>olivaceous green</td>
<td>0.2–0.45 mm</td>
<td>concolorous with disc</td>
<td>pale beige, waxy white or pale pinkish orange</td>
<td>32–41 × 1.2–1.6 µm</td>
<td>unknown</td>
</tr>
<tr>
<td><i>B. delicata</i></td>
<td>fine granular</td>
<td>pale green to fawn</td>
<td>0.3–0.6 mm</td>
<td>paler than disc</td>
<td>white, beige or orange-pink</td>
<td>24–48 × 1–1.5 µm</td>
<td>white, one type</td>
</tr>
<tr>
<td><i>B. egenuloidea</i></td>
<td>fine granular</td>
<td>grey-green</td>
<td>0.3–0.4 mm</td>
<td>concolorous with or darker than disc</td>
<td>pale orange to dark purple-brown</td>
<td>25–34 × 1.1–1.9 µm</td>
<td>hyaline, 75–200 µm, three types</td>
</tr>
<tr>
<td><i>B. inundata</i></td>
<td>granular warted, cracked</td>
<td>grey-green to green-fawn</td>
<td>0.2–0.6 mm</td>
<td>paler than disc, often becoming excluded</td>
<td>pale to dark brown</td>
<td>24–43 × 2–2.5 µm</td>
<td>white or dark brown, two types</td>
</tr>
<tr>
<td><i>B. mendax</i></td>
<td>scurfy, uneven crust or small warts</td>
<td>straw-coloured to bright green</td>
<td>0.2–0.7 mm</td>
<td>concolorous with or paler than disc, ± finally excluded</td>
<td>from whitish to fuscous-brown</td>
<td>30–38 × 1.2–1.5 µm</td>
<td>pale, 150–300 µm, one type</td>
</tr>
<tr>
<td><i>B. neosquamulosa</i></td>
<td>squamulose</td>
<td>green-grey to olive</td>
<td>0.2–1 mm</td>
<td>grey to dark brown, persistent</td>
<td>pink-buff to flesh-coloured with blackened areas</td>
<td>40–55 × 1.3–1.7 µm</td>
<td>colourless to olive-grey, 70–130 µm, abundant, one type</td>
</tr>
<tr>
<td><i>B. phacodes</i></td>
<td>warited to scurfy</td>
<td>white to grey-green</td>
<td>0.2–0.5 mm</td>
<td>paler than disc</td>
<td>white, beige or pale orange-pink</td>
<td>29–45 × 1.5–2 µm</td>
<td>hyaline, one type</td>
</tr>
<tr>
<td><i>B. pseudoisidiata</i></td>
<td>filmy thin, fine granular to corallid</td>
<td>dull greenish to grayish green</td>
<td>0.2–0.4 mm</td>
<td>thinly marginate, becoming immarginate</td>
<td>pale yellowish to yellowish orange</td>
<td>25–35 × 1.1–1.8 µm</td>
<td>−50 µm, hyaline to pale brownish, one type</td>
</tr>
<tr>
<td><i>B. ramea</i></td>
<td>wrinkled or warited to areolate</td>
<td>pale grey, pale yellow-grey or pale green-gray</td>
<td>0.4–0.6 mm</td>
<td>thin, thalline</td>
<td>pale yellow, pale pink to orange brown</td>
<td>31–49 × 1.6–2.2 µm</td>
<td>hyaline, 100 µm, one type</td>
</tr>
<tr>
<td><i>B. squamellosa</i></td>
<td>flat, deeply incised squamules, lobes 20–30 µm wide</td>
<td>pink</td>
<td>0.3–0.5 mm</td>
<td>concolorous with disc, finally excluded</td>
<td>pale pink</td>
<td>45–48 × 1.3–1.4 µm</td>
<td>hyaline, 75–100 µm, three types</td>
</tr>
<tr>
<td><i>B. sulphurella</i></td>
<td>finely granular</td>
<td>dull yellow-green to fawn</td>
<td>0.3–0.7 mm</td>
<td>paler than disc, white-pruinose</td>
<td>white grey to grey-brown</td>
<td>24–46 × 1–2 µm</td>
<td>white, one type</td>
</tr>
</tbody>
</table>

72°C. For ITS the annealing phase was 52°C for 45 sec; for RPB1, 1 min at 56°C; and for mtSSU, 1 min at 58°C. PCR fragments were purified using EXO-SAP (VWR International, West Chester, PA, USA) and sequenced by Macrogen Europe (Amsterdam, The Netherlands). Sequence fragments were assembled using Geneious v. 10.2.3 (Biomatters LTD). Matrices were assembled in Mesquite v. 3.11 (Maddison & Maddison 2016), aligned using MAFFT v. 7.305b with default parameters (Katoh & Standley 2013) and further inspected by eye. Ambiguous regions were delimited manually and excluded from the analyses.

Phylogenetic analyses

We downloaded ITS, mtSSU and RPB1 alignments from Kistenich et al. (2018). We pruned them to keep
a maximum of two representatives per genus, following the new classification from Kistenich et al. (2018), and favouring type species, then taxa with all or most of the three loci, except in clades where sequences exhibited high similarity with our sequences, where all representatives were kept. *Catillaria contristans, Catillaria erysiboides, Glyphopetis ligustica, Protoblastenia rupestris* and *Psora decipiens* were selected as outgroups and other outgroup taxa were further removed (Table S1). We further selected additional sequences showing high similarity to our collections by performing BLASTn searches in the GenBank nucleotide collection (Wheeler et al. 2007), and added them to our dataset. In particular, numerous sequences from Switzerland (Mark et al. 2016) and Central and Eastern Europe (Czarnota & Guzow-Krzemińska 2012, 2018) were added. Single-locus matrices consisted of 100 sequences for ITS, 71 sequences for mtSSU, and 57 sequences for RPBI. The best ML tree was inferred for each locus using RAxML v. 8.2.9 (Stamatakis 2006), searching for the best ML tree and performing 1000 bootstrap pseudoreplicates in the same run, with the GTR-GAMMA model and default settings. Congruence was examined by eye and no significant conflict between loci was observed. The data were therefore concatenated using the combine.pl script from the PLexus package (Magain 2018). The data were partitioned in 7 subsets as follows: ITS1, 5.8S, ITS2, mtSSU, and the three codon positions of RPBI. The best partitioning scheme was inferred using PartitionFinder2 (Lanfear et al. 2016) on the CIPRES portal (Miller et al. 2010) using the BIC criterion and the greedy algorithm.

The three-locus concatenated alignment consisted of 115 taxa and 1850 characters. For the three-locus matrix, the best likelihood tree was inferred with RAxML v. 8.2.12 (Stamatakis 2006; Stamatakis et al. 2008) as the best likelihood tree was inferred with RAxML 115 taxa and 1850 characters. For the three-locus matrix, the greedy algorithm.

Results and discussion

Molecular data

We obtained 3 ITS, 3 mtSSU and 4 RPBI sequences. We obtained ITS and RPBI sequences from one specimen of *Bacidina violacea*, whereas we could not obtain any sequences from the other specimen. We obtained mtSSU and RPBI sequences from one *B. pallidocarpa* specimen, and only mtSSU for the other specimen. We obtained ITS and RPBI sequences from the two DNA extractions of *Tyloclustomum viridifarinum* (Table S1).

Phylogenetic analyses

The final 3-locus alignment consisted of 131 taxa and 1872 characters. The best partitioning scheme retrieved by PartitionFinder consists of a single set. The best substitution model recovered was GTR+1+G. Our best ML tree retrieves the monophyletic family *Ramalinaceae* as circumscribed by Kistenich et al. (2018), with high support [ML Bootstrap (BS) = 75, Bayesian posterior probabilities (pp) = 1; Fig. 4]. In both the ML and the Bayesian analyses, we recovered clades D (BS = 72, pp = 1), E (BS = 100, pp = 1) and G (BS = 85, pp = 1) as monophyletic with high support, clad F (BS = 77, pp = 0.77) with high support in the ML analysis only, and clad C (BS = 65, pp = 0.90) as monophyletic without support. We recovered the same sister relationships of clades C and D without support (BS = 49, pp = 0.84) in the ML analysis, and clades C, D and E formed a well-supported group (BS = 79, pp = 1) in the Bayesian analysis. We did not recover a sister relationship between clades F and G. Instead, we recovered clad F as sister to clades C, D and E, highly supported in the Bayesian analysis (BS = 69, pp = 1).

The genus *Bacidina* appears paraphyletic in our analyses, as it appeared in Kistenich et al. (2018). *Bacidina pallidocarpa* and *B. violacea* belong to a well-supported clade corresponding to part of the genus *Bacidina*, labelled *Bacidina clade II* (Fig. 4, BS = 98, pp = 1) within clad D. The type species of the genus, *B. phacodes*, belongs to the other clade, labelled *Bacidina clade I* in Figure 4. Within *Bacidina clade II, B. violacea* is part of a highly supported group resulting from the first split within the genus (BS = 98, pp = 1), along with four accessions from Switzerland labelled *Bacidina arnoldiana* aggr. (Mark et al. 2016). However, the true *Bacidina arnoldiana*, including a representative from Kistenich et al. (2018) and one from the AFTOL fungal tree of life, belongs to another clade within *Bacidina*. The four accessions from Switzerland may belong to *B. violacea* but the morphology of these specimens could not be examined. *Bacidina pallidocarpa* appears as sister species of *B. neosquamulosa* (represented by two accessions from the Netherlands) with high support in the ML analysis (BS = 88, pp = 0.85). If the genus *Bacidina* was to be split in two, the names *Voessia* (type species corresponding to *B. sulphurella*) and *Lichingoldia* (type species corresponding to *B. inundata*) could accommodate *Bacidina clade II*, containing *B. pallidocarpa* and *B. violacea*.

Tyloclustomum viridifarinum belongs to clade G, and more specifically forms a well-supported group with *Tylothallia biformigera* and two accessions of *Clustomum haematommatis* (BS = 0.99, pp = 1). *Clustomum haematommatis* accommodates the pycnidiate state of a species initially described as *Lichenophoma haematommatis* (Hawkerstow et al. 2006). However, these two
accessions likely do not represent the genus *Cliostomum* sensu stricto, as *Cliostomum corrugatum*, the type species of the genus, belongs to a different subclade within clade G.

Taxonomic treatment

Bacidina pallidocarpa van den Boom & Magain, sp. nov.
(Fig. 1A–B)

MycoBank MB 834077

Diagnosis: A *Bacidina* species similar to *B. chloroticula* in habitus but differing in all the following characters: continuous granular to finely isidiate thallus, slightly shiny, thinly marginate to soon emarginate, larger (0.15‒0.55 mm diam.) apothecia, white to slightly pale cream, plane to convex, disc, acicular, 1‒3-septate, 25‒38 × 1‒1.2(‒1.5) μm ascospores, rare, 50‒150 μm diam. pycnidia, and 20‒35 × 0.8‒1 μm, 0‒3-septate conidia.

Type: Portugal, Azores, São Jorge, E of Santo Amaro, Reserva Florestal das Macelas, small open forest with mixed trees and shrubs, including *Metrosideros* trees and *Camellia* shrubs, on wood of fence post, 38°40.61′ N, 28°09.78′ W, 450 m, 4 September 2017, P. & B. van den Boom 57031 (LG – holotype; LISU, herb. van den Boom – isotypes).

Description. Thallus corticolous, thin, continuous, smooth to fine warty, granular to fine isidiate, greenish, sometimes with pale brown tinge, slightly shiny, 50–100 μm high, without crystals. Prothallus not present. Photobiont chlorococcoid, cells 4‒12 μm diam. Apothecia abundantly present, scattered, 0.15‒0.55 mm diam., sometimes thinly marginate when young, margin somewhat paler than disc, 20‒40 μm wide, soon becoming immarginate; disc plane to weakly convex, white or pale cream, or with yellowish tinge. Excipulum hyaline, without crystals, laterally with paraplectenchymatous cells, up to 8 μm diam. and below with radiating cells, cells conglutinated, lumina 5‒8 × 2‒3.5 μm, with rather thick walls (2‒3 μm between adjacent cell lumina). Epithecium hyaline or very pale yellowish brown, without crystals, K–, N–. Hymenium 25‒45 μm high, without any pigment. Hymenium of paraphyses simple, thin, 1‒1.5 μm wide, septate, tips slightly to strongly widened, up to 5 μm, not pigmented. Asci abundant, *Bacidia*-type, small, cylindrical to slightly clavate, 25‒40 × 7‒10 μm, 8-spored, tholus rather thin, weakly amyloid, more strongly amyloid below and at apex, ocular chamber lacking. Ascospores acicular, clearly coiled in ascus, varying from straight to slightly sigmoid, 1‒3-septate, 25‒38 × 1‒1.2(‒1.5) μm. Pycnidia rare, inconspicuous, immersed in thallus, 50‒150 μm diam., white. Conidia filiform, straight to strongly curved, 20‒35 × 0.8‒1 μm, 0‒3-septate.

Chemistry. K–, C–, P–, UV‒, no chemical compounds detected.

Etymology. The epithet refers to the habitus of the apothecia, especially the always white to pale cream colour.

Distribution and ecology. Azores, known from four localities, where it grows always abundantly, on trunks of trees and on wood of fences. At the type locality no additional lichens have been found, not even in the collection (56937) from Pico.

Notes. The most similar species, *Bacidina chloroticula*, for which it can be mistaken in the field, differs by the whitish, pale pinkish, yellowish, or pale grey-brown apothecia, the scurfy greenish to pale brownish thallus, ± cracked to areolate, its much smaller apothecia, up to 0.2 mm diam, and ascospores somewhat wider (1‒1.8 μm), 0–3-septate. For further main diagnostic features of similar *Bacidina* species, see Table 1.

The new species somewhat resembles *Bacidia assimulata* s.l. because the apothecia are pale brick-red to very pale orange-brown, but the ascospores are much longer and 1.5–2 μm wide.

In the field it is easily confused with *Lecania chlorotiza*, but that species has smaller apothecia (0.1‒0.3 mm diam.) and 0‒1-septate ascospores.

Additional specimens examined. PORTUGAL. Azores, São Jorge, NW of Velas, WNW of Rosais, trail to Farol dos Rosais, near Chã do Areeiro, small forest with *Erica* and *Pittosporum* and stones of walls, on trunk of unidentified tree, 38°44.82′N, 28°17.92′W, 290 m, 7 September 2017, P. & B. van den Boom 57177 (herb. van den Boom); Pico, E of Madalena, Parque Florestal da Quinta das Rosas, botanical garden with mixed shrubs and trees, including some exotic trees, on trunk of ginkgo, 38°31.38′N, 28°29.38′W, 150 m, 29 August 2017, P. & B. van den Boom 56556 (herb. van den Boom); 2 km W of São João, Reserva Florestal São João,
Bacidina violacea van den Boom & Magain, sp. nov.
(Fig. 2A–B)

MycoBank MB 834078

Diagnosis: A Bacidina species similar to B. caligans in habitus but differing in all the following characters: completely farinose thallus, greyish brown (with violet tinge), paler than the disc, apothecial margin, dark brown disc, brown-pigmented epithecium, brown hypothecium, acicular, straight to slightly curved, 1–5-septate, (25–)35–50 × 1–1.5 μm ascospores.

Type: Portugal, Azores, Pico, W side of island, E of Madalena, Parque Florestal da Quinta das Rosas, botanical garden with mixed shrubs and trees, including some exotic trees, 38°31.38′N, 28°29.38′W, 150 m, 29 August 2017, P. & B. van den Boom 56552 (LG – holotype; LISU, herb. van den Boom – isotypes).

Description. Thallus corticolous, areolate, farinose, yellowish brown to very pale brown, matte, 50–100 μm high, granules (goniocysts) 20–50 μm diam., without crystals. Prothallus not present. Photobiont chlorococcoid, cells 5–12 μm diam. Apothecia abundantly present, scattered, 0.2–0.7 mm diam., thinly marginate, especially when young, margin paler than disc, greyish brown with dark violet tinge, becoming immarginate, 30–50 μm wide; disc plane to weakly convex, dark brown. Excipulum partly reddish brown, without crystals, laterally with small paraplectenchymatous cells, up to 4 μm diam., and below with radiating cells, cells strongly conglutinated, isodiametric, lumina 2–3.5 μm wide, with rather thick walls (2–3 μm between adjacent cell lumina). Epithecium very pale yellowish brown, without crystals, K–, N–. Hymenium 45–55 μm high, without any pigment. Hypothecium brown, up to 75 μm high, K–. Hamatheicum of paraphyses thin, 1.2–2 μm wide, separte, tips often slightly to more clearly widened, up to 3.5 μm, often slightly brownish-pigmented. Asci abundant, Bacidia-type, small, cylindrical to slightly clavate, 35–45 × 9–11 μm, 8-spored, tholus rather thick, weakly amyloid, more strongly amyloid below and at apex, ocular chamber lacking. Ascospores acicular, straight in ascus, sigmoid, 1–5-septate, (25–)35–50 × 1–1.5 μm. Pycnidia not detected.

Chemistry. K–, C–, P–, UV–, no chemical compounds detected. No crystals detected in apothecia or thallus. Sperba-brown (Meyer & Printzen 2000) present in apothecia.

Etymology. The epithet refers to the colour of the apothecial margin.

Distribution and ecology. Azores and Madeira, known from two localities only, where it grows abundantly, on trunks of an unidentified tree (type locality) and branches of a Michelia doltsopa tree. No accompanying lichen species have been found.
Figure 4. Best ML phylogenetic tree of the *Ramalinaceae*, based on the 3-locus matrix (ITS, mtSSU, RPB1). Branches with ML bootstrap values less than 30 were collapsed using TreeGraph2 (Stover and Muller 2010). Rooting, delimitation of *Ramalinaceae* clades are indicated on the tree. Newly described species are bolded.

Notes. It is most likely to be confused in the field with *Bacidina caligans*, but that species has a scurfy granular-sorediate thallus, the granules are somewhat wider (20–50 µm), the margin of the apothecia is darker than the disc, and it has white to pink immersed pycnidia. Pycnidia are unknown in the new species. A similar species, *Bacida* *dina sulphurella*, for which it also can be mistaken in the field, differs by the mainly grey brown apothecia which have a raised margin and are often white pruinose; the excipulum has ellipsoid lumina ~3–7 × 1.5–5 µm and the ascospores are 1–3-septate.

A *Bacida* species described from Macaronesia (El Hierro), *B. subullludens*, also has a brown hypothecium but the apothecia are black and the pycnidia are abundant, with conidia 5–8 × 1 µm (Pitard & Harmand 1911).

The thallus of *Bacidina delicata* is rather similar to that of the new species but has white to orange-pink apothecia and a hyaline hypothecium. *Bacida arceutina* often has dark brown apothecia but these have a darker (brown) margin instead of the dark violet in the new species, and the ascospores are wider (1.5–2–2.5 µm). Although the type collection of *B. violacea* is rather
large, with >100 apothecia, no pycnidium could be found, which is also the case in the collection from Madeira. For further main diagnostic features of similar Bacidina species, see Table 1.

Additional specimens examined. PORTUGAL. Madeira, E of Funchal, Palheiro Gardens, mixed shrubs and trees, including many mature trees, 32°38.58′N, 16°52.04′W, 520 m, 4 April 2019, P. & B. van den Boom 58193 (LG – holotype; LISU, herb. van den Boom – isotypes).

Tylocliotostomum van den Boom & Magain gen. nov.

Mycobank MB 834079

Diagnosis: Distinguished from Tylothallia by having Catillaria-type asci, simple paraphyses, lack of gel-coated hyphae in excipulum, and from Clistostomum by the prosoplectenchym cells in the excipulum, Catillaria-type asci, lack of pycnidia and the lack of chemical compounds.

Generic type: *Tylocliotostomum viridifarinosum* van den Boom & Magain.

Etymology. The new genus is named after the phylogenetic relationship with the genus Tylothallia and the similarity in habitus to Clistostomum species such as *C. griffithii*.

Tylocliotostomum viridifarinosum van den Boom & Magain, sp. nov. (Fig. 3A–B)

Mycobank MB 834080

Diagnosis: Thallus, thin, continuous, farinose, granules (goniozysts) 8–20 µm diam., green, apothecia 0.15–0.4 mm diam., flat to convex, proper margin often visible, concolorous with or paler than disc, becoming excluded, disc white to pale cream or medium grey, sometimes with bluish grey tinge, ascospores narrow ellipsoid to bacillar, 11–15(–17) × 2.5–3(–3.2) µm, 1-septate, thin-walled; no chemical compounds detected.

Type: Portugal, Madeira, NW of Funchal, road (ER228), from Ribeira Brava to São Vicente, 1.5 km N of Boca da Encumeada, Chão dos Louros, very big picnic area with mature trees along laurisilva, 32°45.62′N, 17°00.98′W, 825 m, 5 April 2019, P. & B. van den Boom 58193 (LG – holotype; LISU, herb. van den Boom – isotypes).

Description. Thallus thin, continuous, farinose, granules (goniozysts) 8–20 µm diam., bright green. Prothallus not present. Photobiont chlorophycean, cells 5–11 µm diam. Apothecia usually present, 0.15–0.4 mm diam., flat to slightly convex. Proper margin often visible, sometimes well developed, up to 50 µm wide and present especially in young apothecia, the concolorous with or somewhat paler than disc, often becoming excluded. Disc white to pale cream, very pale yellowish, sometimes with bluish grey tinge, scattered over apothecia, or completely medium grey. Excipulum sometimes well developed and rather thick, 40–60 µm wide, with small prosoplectenchym cells filled with fine granular crystals (studied in polarised light), hyaline. Hymenium 45–60 µm high, hyaline. Epithecium pale greyish brown to very pale brown or pale bluish brown, filled with fine granular crystals (studied in polarised light). Hypothecium hyaline, ~50 µm high. Paraphyses simple, usually septate, 1.2–1.8 µm wide, apices sometimes somewhat widened, 2.5–4 µm diam., tips hyaline to sometimes pale bluish brownish. Asci cylindrical-clavate to clavate, 8-spored, Catillaria-type, sometimes with relatively small ocular chamber, 23–35 × 12–15 µm. Ascospores narrow ellipsoid to bacillar, 11–15(–17) × 2.5–3(–3.2) µm, 1-septate, thin-walled, often with two oil droplets in one cell. Pycnidia not detected.

No chemical compounds detected.

Etymology. The epithet refers to the habitus of the thallus, which is farinose and clearly green.
Habitat and distribution. This new species is abundantly present in the type locality, growing on twigs of Erica shrubs. Cliomegalaria symmtioides and Endothyлина ericina, whose presence is revealed by many or few apothecia, respectively, share this habitat.

Notes. In the field, Tyloclistomum viridifamomum is easily mistaken for Cliomegalaria symmtioides because the apothecia are cream-coloured and slightly convex and appressed, but the thallus differs, being areolate, not farinose, with a somewhat shiny upper surface, and the ascospores are thick-walled, 1-septate and much wider (4.5‒6.5 µm). The habitus of the new genus somewhat resembles Cliostomum, especially if the ascomata are pale in the latter. The hyaline ascospores in Cliostomum griffithii are usually also 1-septate, but sometimes wider, reaching 3.5 µm in width versus 3.2 µm maximum in T. viridifamomum. Cliostomum species have usually numerous, conspicuous black pycnidia, which seem to be absent in the new species. The relationship with the genus Tylothalix is unexpected, because T. biformigera, known from the temperate zone of the Northern Hemisphere, develops a thick rimose thallus with dark brown apothecia, on acidic rock (Smith et al. 2009).

Acknowledgements

We dedicate this paper to Professor Emmanuél Sérusiaux in honour of his many contributions to lichenology and for his valuable collaborations on joint projects. We thank Laurent Golý for technical assistance in the lab.

Supplementary electronic material

Table S1. Specimens used in phylogenetic analyses, with species name, voucher or isolate information, and sequence GenBank numbers. Newly described taxa and newly generated sequences are bolded. Download file

References

